San Joaquin County Flood Control and Water Conservation District

Groundwater Report Fall 2016

San Joaquin County Flood Control and Water Conservation District

Board of Supervisors

Chuck Winn, Chairman Miguel Villapudua Vice Chairman Katherine Miller Tom Patti Bob Elliot

Flood Control Engineer Director of Public Works

Kris Balaji

Deputy Director of Public Works

Fritz Buchman

Report Prepared by:

DISTRICT STAFF

Brandon W. Nakagawa, P.E	Water Resources Coordinator
Michael Callahan, P.E	Senior Engineer
Gerardo Dominguez, P.E	Associate Engineer
Justin Padilla	Engineering Assistant

Introduction

© San Joaquin County Department of Public Works, Stockton, 2017

Copies of the Fall 2016 Groundwater Report may be purchased for \$30 and 36"X48" Contour Maps for \$25 each from:

San Joaquin County Department of Public Works
P.O. Box 1810
Stockton, California 95201
Make checks payable to: San Joaquin County Department of Public Works

ii Introduction

Acknowledgements

. .

This Groundwater Report is a product of the commitment that the San Joaquin County Flood Control and Water Conservation District together with many other interested agencies made to sustain and enhance the groundwater resources of the Eastern San Joaquin Basin. The District extends thanks to...

California Water Service

City of Lathrop

City of Lodi

City of Manteca

City of Stockton Municipal Utilities Department

East Bay Municipal Utility District

Libby-Owens-Ford, Lathrop

Morada Area Association

Newark Sierra Paperboard Company

Pacific Gas and Electric Company

San Joaquin County Department of Public Works

State of California, Department of Water Resources, Central District

Stockton East Water District

United States Bureau of Reclamation

United States Geological Survey

Most of all, we would like to thank all of the individual well owners, who give us access to their wells and in some cases some of their time.

iii Introduction

Table of Contents

. . .

Acknowledgements	iii
Table of Contents	iiv
Fall 2016 Groundwater Report	vii
Introduction	vii
Purpose	vii
Procedure	
Section 1-Rainfall Distribution	1-1
Summary of Rainfall Distribution	1-1
Annual Rainfall Distribution	
Figure 1-1: Total Annual Rainfall (Stockton Fire Station 4)	
Figure 1-2: Total Annual Rainfall (Tracy Carbona Station)	
Figure 1-3: Total Annual Rainfall (Lodi Station)	
Figure 1-4: Total Annual Rainfall (Camp Pardee)	
Monthly Rainfall Distribution	1-6
Figure 1-5: Monthly Rainfall Distribution (Stockton Fire Station 4)	
Figure 1-6: Monthly Rainfall Distribution (Tracy Carbona Station)	
Figure 1-7: Monthly Rainfall Distribution (Lodi Station)	
Figure 1-8: Monthly Rainfall Distribution (Camp Pardee)	1-7
Section 2 – Groundwater Quality Monitoring	2-1
Summary of Groundwater Quality	2-1
Figure 2-1: Salinity Monitoring Well Locations	2-2
Table 2-1: Groundwater Quality Mineral Analysis Fall 2016	2-3
Figure 2-2: Quality Comparison Graph Well 34A3	
Figure 2-3: Quality Comparison Graph Well 35G2	
Figure 2-4: Quality Comparison Graph Well 35N1	
Figure 2-5: Quality Comparison Graph Well 25M3	
Figure 2-6: Quality Comparison Graph Well 25M4	
Figure 2-7: Quality Comparison Graph Well 36B1	
Eigene 2 9. Ovolity Commonicon Chamb Wall 4E1	2-11
Figure 2-8: Quality Comparison Graph Well 4E1	2.12
Figure 2-9: Quality Comparison Graph Well 8C1	
Figure 2-9: Quality Comparison Graph Well 8C1Figure 2-10: Quality Comparison Graph Well 8Q2	2-13
Figure 2-9: Quality Comparison Graph Well 8C1	2-13 2-14
Figure 2-9: Quality Comparison Graph Well 8C1	2-13 2-14 2-15
Figure 2-9: Quality Comparison Graph Well 8C1	2-13 2-14 2-15 2-16
Figure 2-9: Quality Comparison Graph Well 8C1	2-13 2-14 2-15 2-16 2-17

Section 3 – Groundwater Elevation Monitoring	
Summary of Groundwater Elevations	3-1
Table 3-1: Comparison of CSJWCD Area Fall Water Levels	
Table 3-2: Comparison of NSJWCD Area Fall Water Levels	
Table 3-3: Comparison of OID Area Fall Water Levels	
Table 3-4: Comparison of SEWD Area Fall Water Levels	
Table 3-5: Comparison of SSJID Area Fall Water Levels	
Table 3-6: Comparison of WID Area Fall Water Levels	
Table 3-7: Comparison of Southwest County Area Fall Water Levels	
Figure 3-1: Well Hydrograph Locations	
Figure 3-2: Fall Hydrograph Well A	
Figure 3-3: Fall Hydrograph Well B	
Figure 3-4: Fall Hydrograph Well C	
Figure 3-5: Fall Hydrograph Well D	
Figure 3-6: Fall Hydrograph Well E	
Figure 3-7: Fall Hydrograph Well F	
Figure 3-8: Fall Hydrograph Well G	
Figure 3-9: Fall Hydrograph Well H	
Figure 3-10: Fall Hydrograph Well I	
Figure 3-11: Fall Hydrograph Well J	
Figure 3-12: Fall Hydrograph Well K	
Figure 3-13: Fall Hydrograph Well L	
Figure 3-14: Fall Hydrograph Well M	
Figure 3-15: Fall Hydrograph Well N	
Figure 3-16: Fall Hydrograph Well O	
Figure 3-17: Fall Hydrograph Well P	
Figure 3-18: Fall Hydrograph Well Q	
Figure 3-19: Fall Hydrograph Well R	
Figure 3-20: Fall Hydrograph Well S	
Figure 3-21: Fall Hydrograph Well T	
Figure 3-22: Fall Hydrograph Well U	3-38
Figure 3-23: Fall Hydrograph Well V	3-39
Figure 3-24: Fall Hydrograph Well W	3-40
Figure 3-25: Fall Hydrograph Well X	3-41
Figure 3-26: Fall Hydrograph Well Y	
Figure 3-27: Fall Hydrograph Well Z	3-43
Figure 3-28: Cross Section Alignments	3-44
Figure 3-29: Highway 99 Cross Section Fall 2016	3-45
Figure 3-30: Highway 4 & Highway 26 Cross Section Fall 2016	3-46
Figure 3-31: Jacktone Rd Cross Section Fall 2016	3-47
Figure 3-32: Differences in Groundwater Elevations Fall 2016	3-48
Figure 3-33: Lines of Equal Depth to Groundwater Fall 2016	
Figure 3-34: Lines of Equal Depth to Groundwater Fall 2015	
Figure 3-35: Lines of Equal Elevation of Groundwater Fall 2016	
Figure 3-36: Lines of Equal Elevation of Groundwater Fall 2015	3-52

V

Introduction

This page intentionally left blank.

vi Introduction

San Joaquin County Flood Control and Water Conservation District Fall 2016 Groundwater Report

Introduction

Since the fall of 1971, the San Joaquin County Flood Control and Water Conservation District has monitored groundwater levels and groundwater quality and has published the data in the Semi-annual Groundwater Report. This report utilizes data from federal, state and local government agencies as well as non-governmental sources.

Water level data is collected on a semi-annual basis, during the months of April and October, to observe groundwater levels before and after peak groundwater pumping conditions. Over 550 wells, of which 270 are measured by County staff, are included in the Monitoring Program. The exact number of wells varies from year to year, depending on circumstances such as destructions, new well construction, well accessibility, and well condition.

Purpose

The purpose of the Semi-annual Groundwater Report is to provide information on groundwater conditions in San Joaquin County and to publish the results of the groundwater monitoring program which consists of the following:

- 1. Monitor groundwater quality along a North-South line from the north of the City of Stockton to the City of Lathrop.
- 2. Measure groundwater levels on a County-wide basis.

In general, water quality data is more meaningful after peak production which usually occurs during the summer months. Therefore, groundwater quality data will be published only in the fall report. The groundwater depth and elevation data will be published both in the spring and fall.

Saline intrusion from the west is a continuing concern affecting the quality of groundwater in the Eastern San Joaquin Groundwater Basin. Groundwater quality analysis is completed on an annual basis, from approximately 18 municipal and domestic supply wells (exact number varies from year to year) located in proximity to the saline front.

vii Introduction

Procedure

Groundwater quality sampling is conducted on an annual basis during the month of October, along with the Fall measurements. Approximately 18 wells are currently sampled. The exact number of wells may vary depending on well access and other conditions. Replicate groundwater samples (two) are analyzed for Chloride (Cl⁻) by Fruit Growers Laboratory, Inc., and analyzed for Electrical Conductivity (EC) using DiST 3 by Hanna Instruments. Total Dissolved Solids (TDS) are calculated using the formula: TDS = 0.64 X EC (umhos). Data is then stored in a database for accessibility and reporting requirements.

Water level measurements are performed with the use of either a steel chain or sounder. Data is then immediately recorded in field books and then stored in a database for accessibility and reporting requirements.

viii Introduction

Section 1-Rainfall Distribution

Summary of Rainfall Distribution

The underlying groundwater basin levels in San Joaquin County respond to changes in annual precipitation. There are four total annual precipitation graphs and four monthly precipitation graphs included in this report (Figures 1-1 through 1-8). These graphs reflect three areas located across San Joaquin County and one area in Calaveras County. The station located at the Stockton Fire Station No. 4, as well as the station located in Tracy Carbona, has pertinent data beginning in 1940. Lodi station has data from 1949 to 2016. The Camp Pardee station has data available from 1949 to 2016.

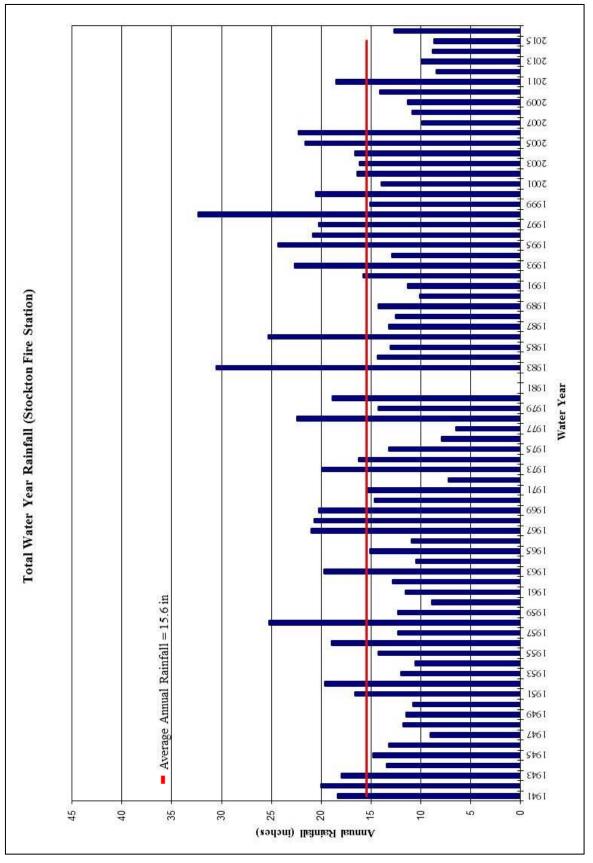


Figure 1-1: Total Annual Rainfall (Stockton Fire Station 4)

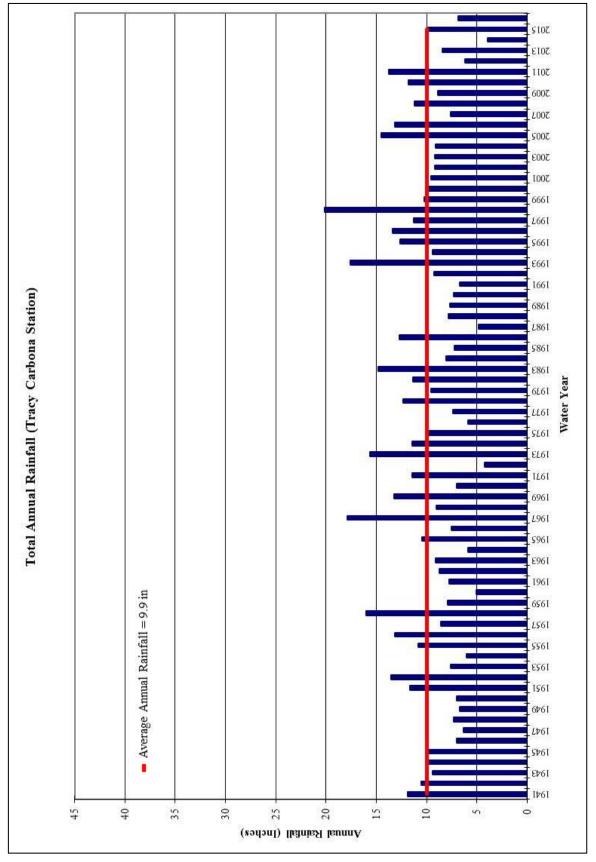


Figure 1-2: Total Annual Rainfall (Tracy Carbona Station)

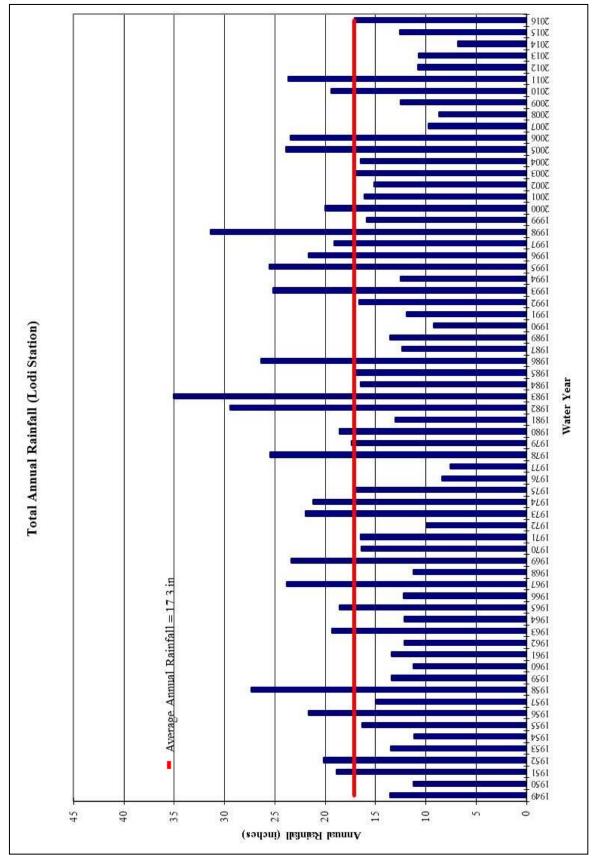


Figure 1-3: Total Annual Rainfall (Lodi Station)

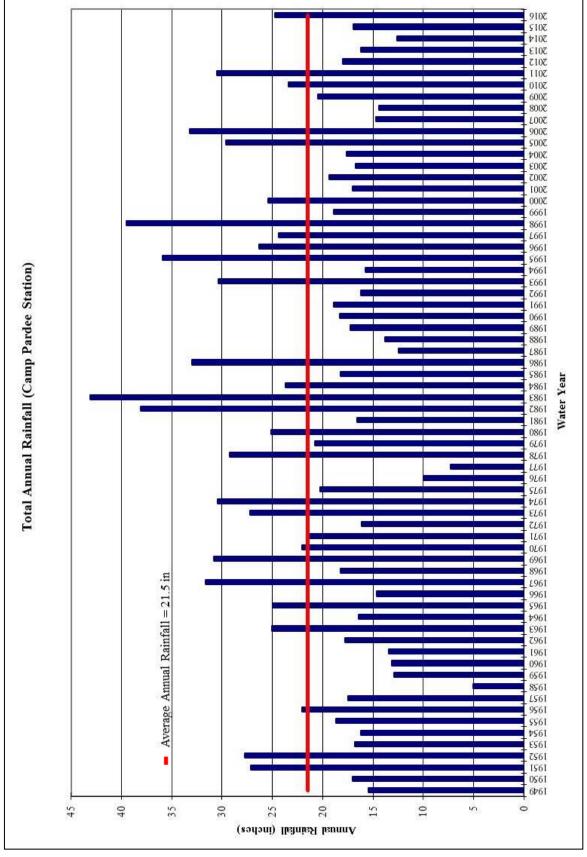


Figure 1-4: Total Annual Rainfall (Camp Pardee)

Monthly Rainfall Distribution

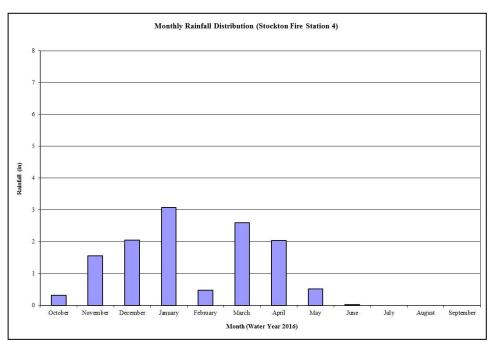


Figure 1-5: Monthly Rainfall Distribution (Stockton Fire Station 4)

Figure 1-6: Monthly Rainfall Distribution (Tracy Carbona Station)

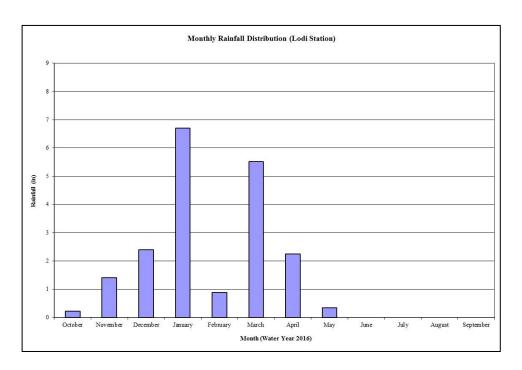


Figure 1-7: Monthly Rainfall Distribution (Lodi Station)

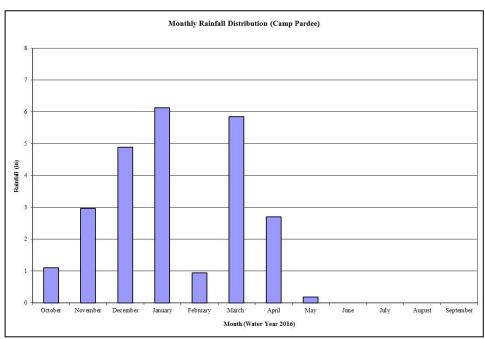


Figure 1-8: Monthly Rainfall Distribution (Camp Pardee)

This page intentionally left blank.

Section 2 – Groundwater Quality Monitoring Summary of Groundwater Quality Results

The information contained in the Fall 2016 Groundwater Report is summarized as follows:

North San Joaquin County – One well was sampled Cl⁻, EC and TDS in Woodbridge, the well was not sampled in the fall of 2015 and therefore no comparisons can be made.

North Stockton – Four wells were tested for Cl⁻, EC and TDS in North Stockton. Two of the wells increased in Cl⁻, EC and TDS concentrations from the previous measurements in the fall of 2015. One of the wells decreased in Cl⁻, EC and TDS concentrations, and one of the wells were not comparable to the analysis in the fall 2015.

<u>County Hospital Area</u> – Due to access constraints no wells were tested in this area this year.

<u>Lathrop</u> – Two wells were sampled in Lathrop. Both of the wells increased in Cl⁻, EC and TDS concentrations from the analysis in the fall 2015.

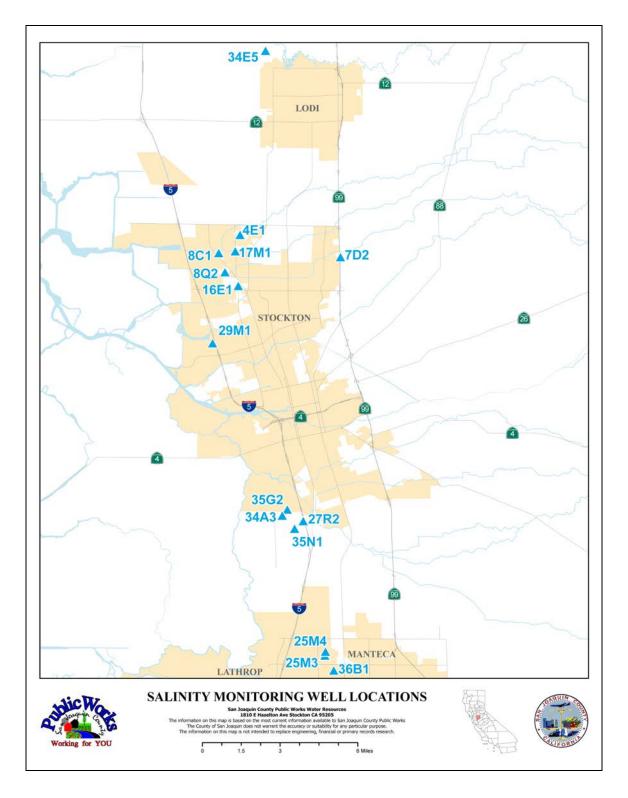


Figure 2-1: Salinity Monitoring Well Locations

Table 2-1: Groundwater Quality Mineral Analysis Fall 2016

Well	Chloride ppm	EC mmho	TDS* ppm
34A3	-	-	-
35G2	-	-	-
35N1	-	-	-
25M3	64	0.669	428
25M4	36	0.500	320
36B1	-	-	-
4E1	24	0.590	378
8C1	32	0.865	554
8Q2	-	-	-
16E1	-	-	-
17M1			
29M1	75	0.650	416
7D2	6	0.400	256
34E5	19	0.500	320

^{*}TDS values are calculated by the following formula: TDS = .64*1000*EC

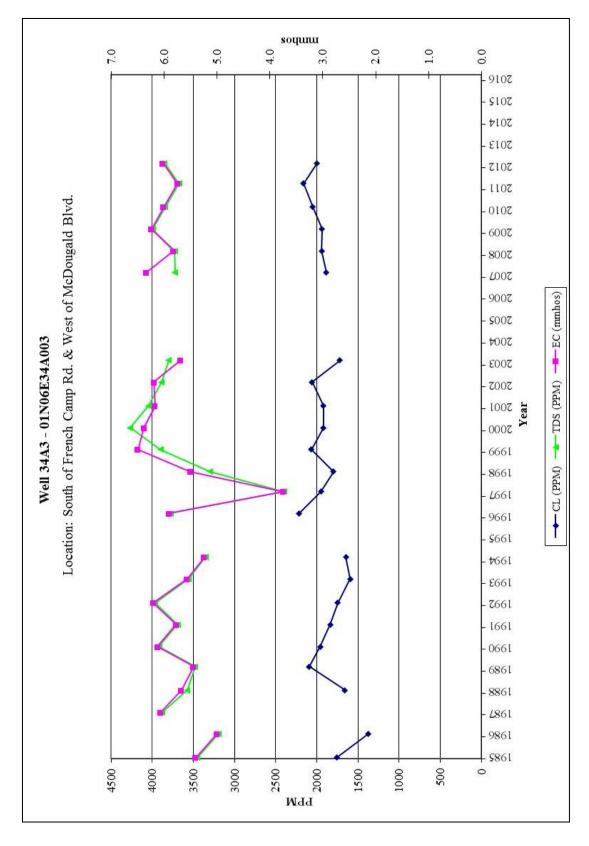


Figure 2-2: Quality Comparison Graph Well 34A3

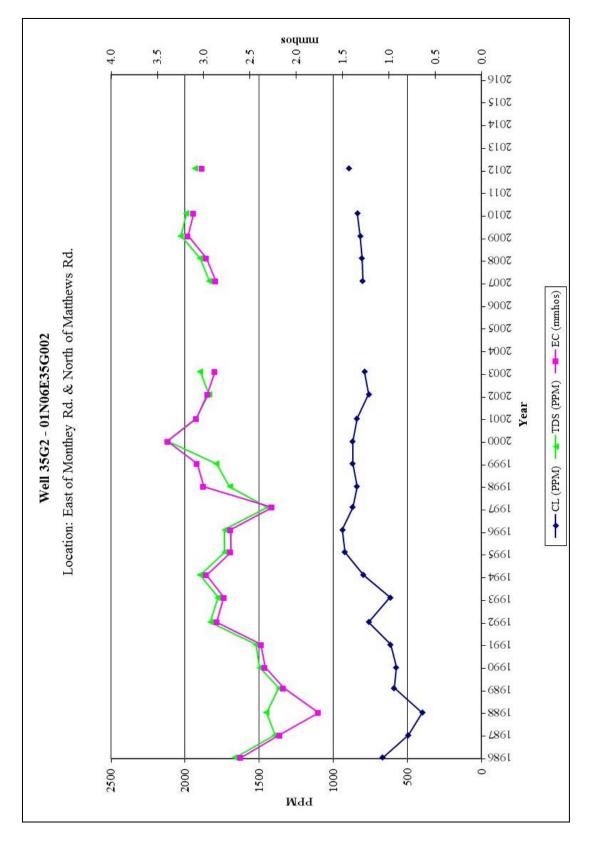


Figure 2-3 Quality Comparison Graph Well 35G2

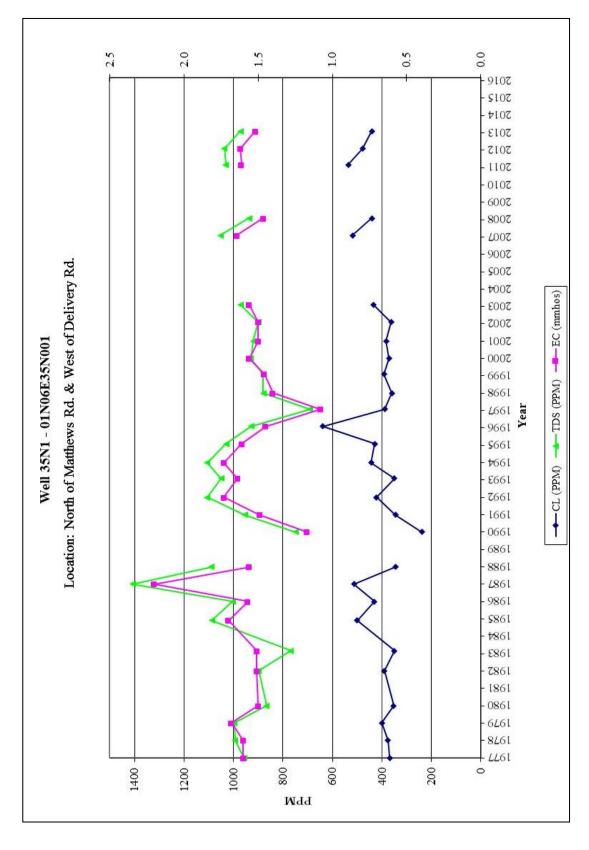


Figure 2-4: Quality Comparison Graph Well 35N1

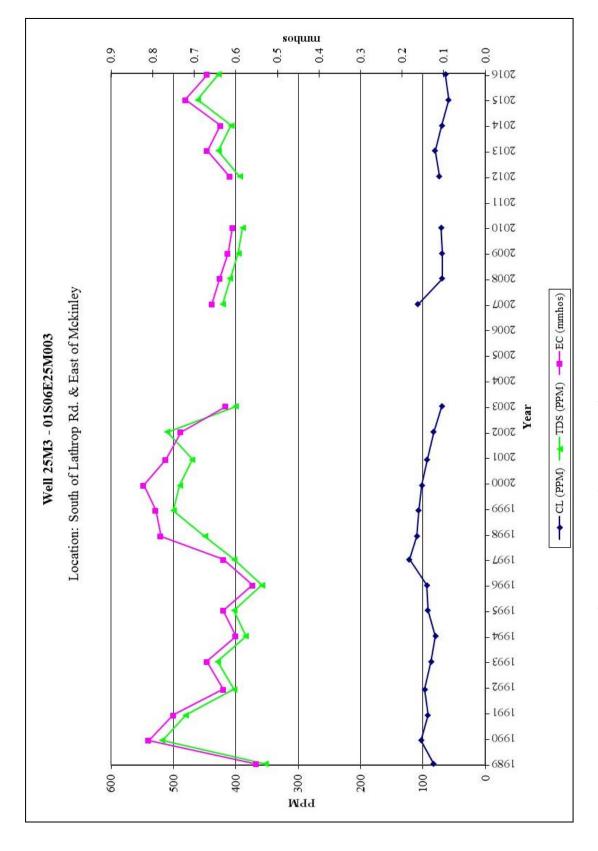


Figure 2-5: Quality Comparison Graph Well 25M3

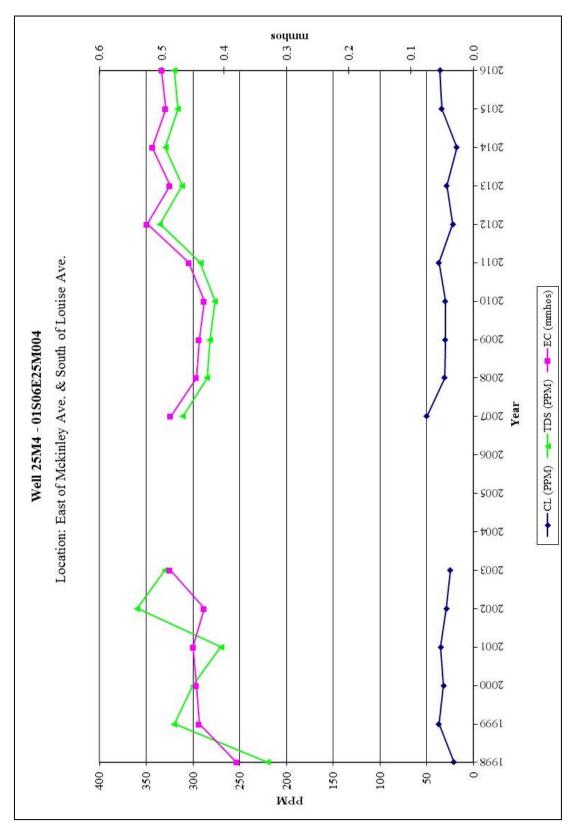


Figure 2-6: Quality Comparison Graph Well 25M4

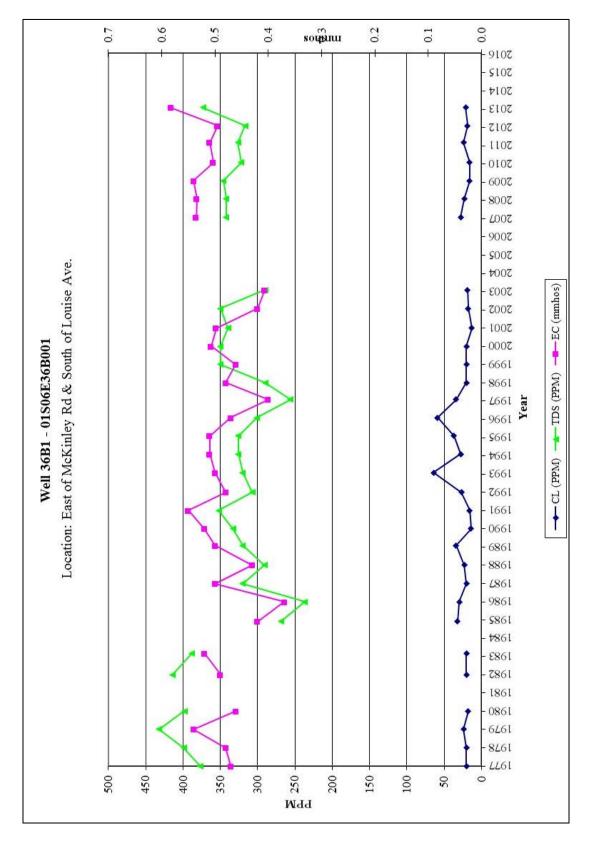


Figure 2-7: Quality Comparison Graph Well 36B1

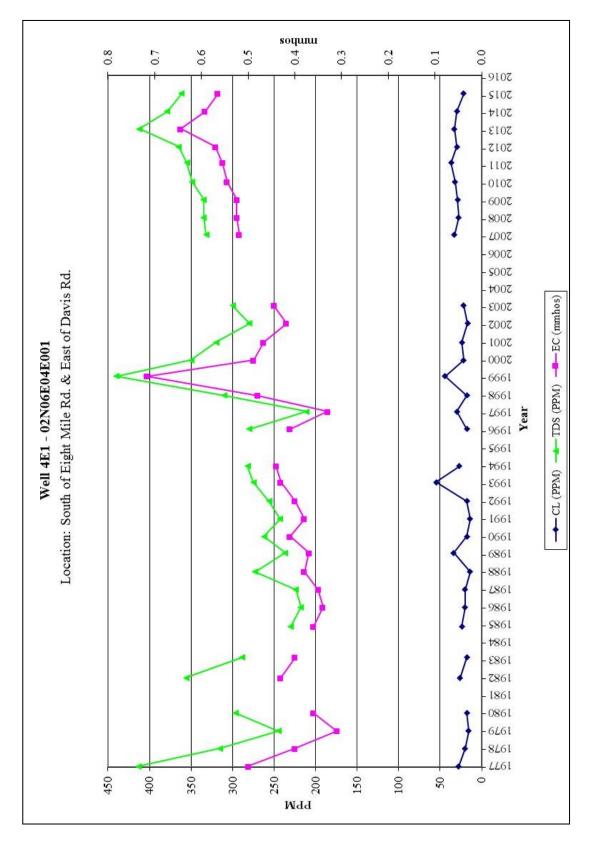


Figure 2-8: Quality Comparison Graph Well 4E1

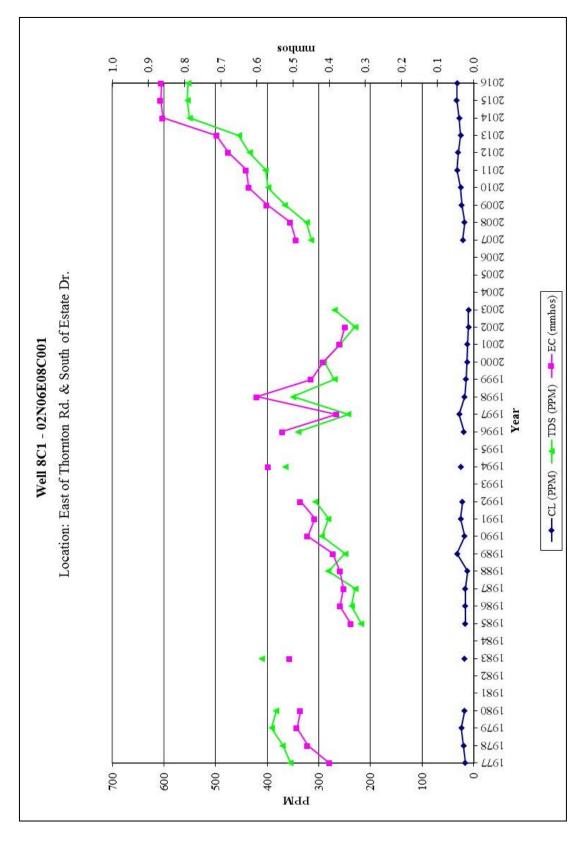


Figure 2-9: Quality Comparison Graph Well 8C1

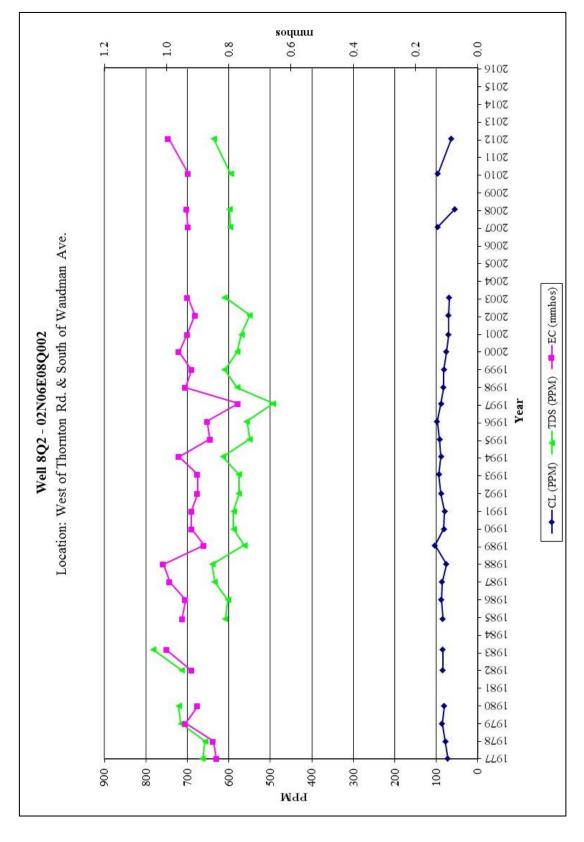


Figure 2-10: Quality Comparison Graph Well 8Q2

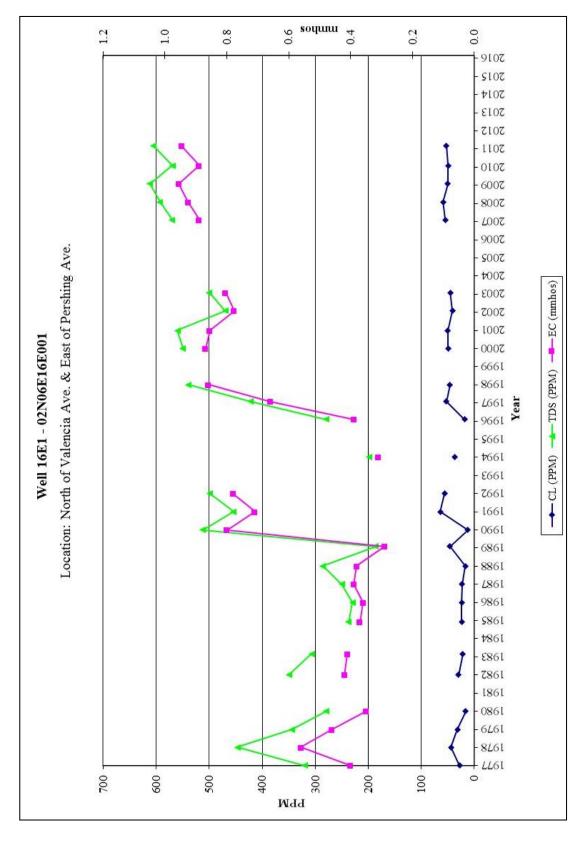


Figure 2-11: Quality Comparison Graph Well 16E1

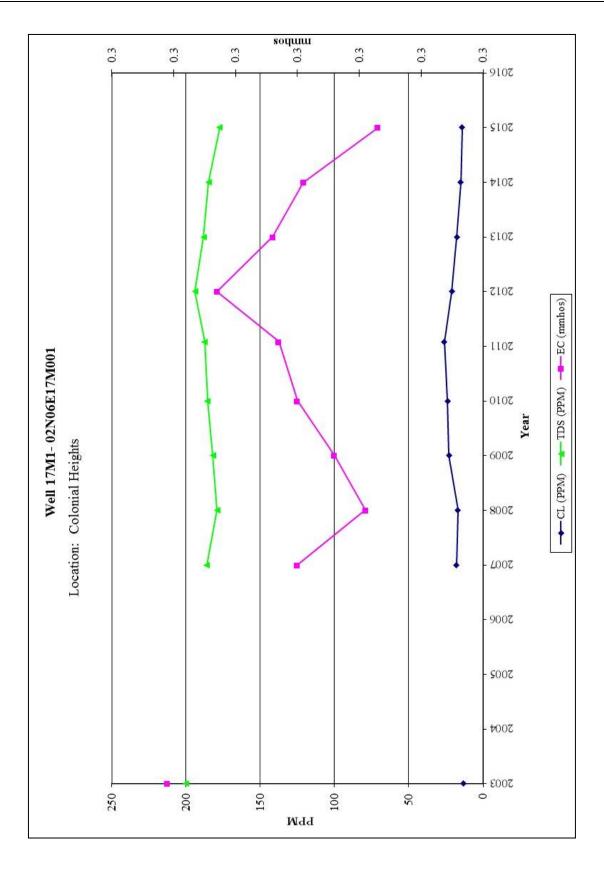


Figure 2-12: Quality Comparison Graph Well 17M1

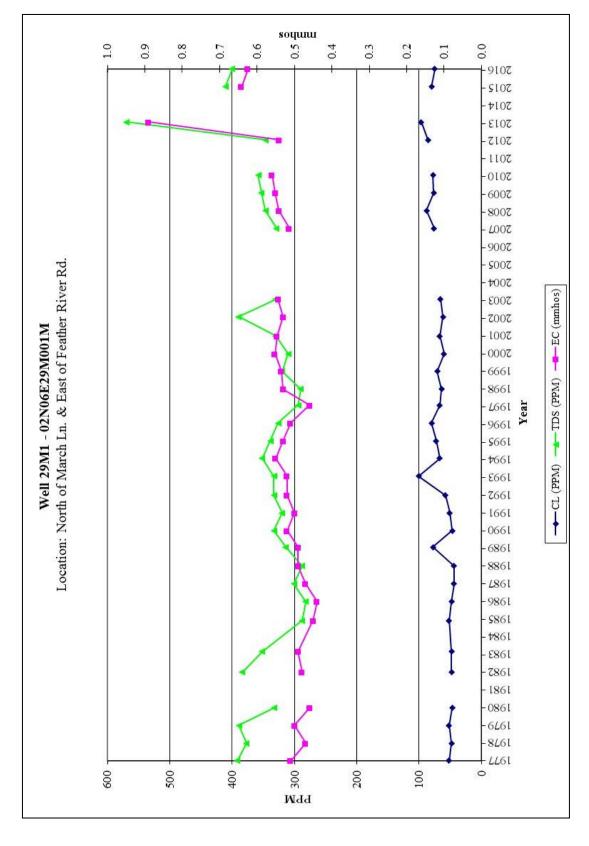


Figure 2-13: Quality Comparison Graph Well 29M1

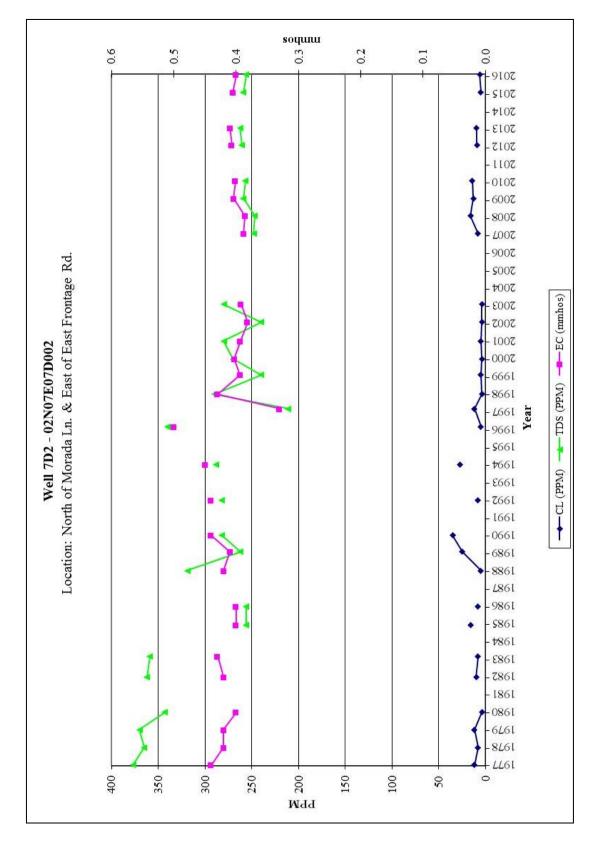


Figure 2-14: Quality Comparison Graph Well 7D2

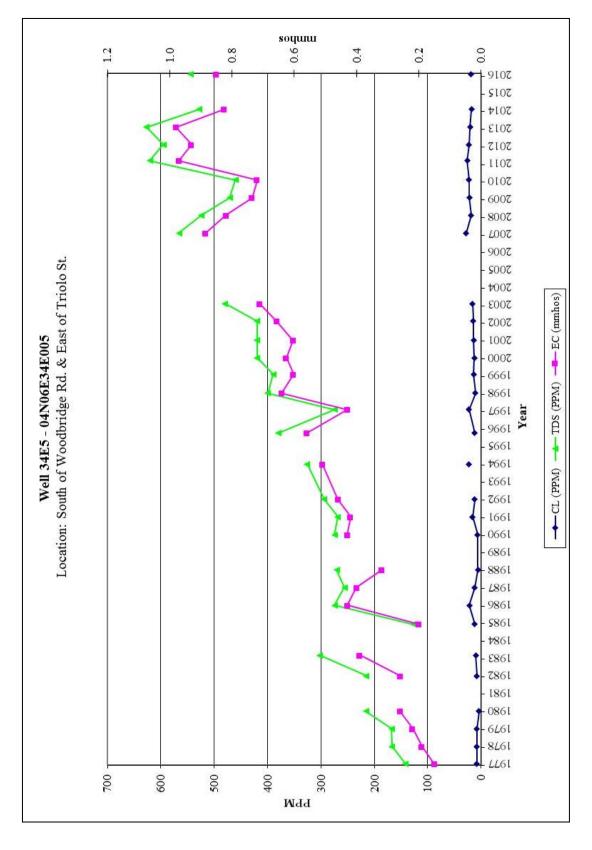


Figure 2-15: Quality Comparison Graph Well 34E5

This page intentionally left blank.

Section 3 – Groundwater Elevation Monitoring Summary of Groundwater Elevations

The information contained in the Fall 2016 Groundwater Report is summarized as follows:

GROUNDWATER LEVELS

<u>Central San Joaquin Water Conservation District (CSJWCD)</u> – Fourteen (14) wells were able to be compared in CSJWCD. Eleven (11) show decreases in groundwater levels. Three (3) wells show an increase in groundwater levels.

North San Joaquin Water Conservation District (NSJWCD) – One-hundred nineteen (119) wells were compared in NSJWCD. Seventy-four (74) wells decreased in groundwater levels. Forty-five (45) wells increased in groundwater levels.

Oakdale Irrigation District (OID) – One (1) well1 was compared in the OID area. The well decreased in groundwater elevation.

Stockton East Water District (SEWD) – Ninety (90) wells were compared in SEWD. Forty-four (44) wells decreased in groundwater levels. Forty (40) wells show increases in groundwater levels. Six (6) wells had no change in groundwater elevation.

South San Joaquin Irrigation District (SSJID) – Twenty-two (22) wells were compared in the SSJID area. Twelve (12) wells declined in groundwater elevation. Nine (9) increased in groundwater elevation. One (1) well had no change in groundwater elevation.

<u>Woodbridge Irrigation District (WID)</u> – Twenty-four (24) wells were compared in WID. Six (6) wells decreased in groundwater levels. Seventeen (17) wells shows increase in groundwater levels. One (1) well had no change in groundwater elevation.

<u>Southwest County Areas</u> – Thirty-one (31) wells were compared across the Southwest County. Twenty-seven (27) wells decreased in groundwater levels. Three (3) wells increased in groundwater level. One (1) well had no change in groundwater elevation.

Table 3-1 Comparison of CSJWCD Water Levels

StateWellID	Fall 2016	Fall 2015	Change
01N07E11L001	****	-57.0	****
01N07E13J002	****	***	****
01N07E14J002	-62.6	-52.1	-10.5
01N07E24A001	****	***	****
01N07E24R001	****	-60.0	****
01N07E26H003	****	****	****
01N07E32A001	-24.4	-22.9	-1.5
01N08E09L001	****	-63.2	****
01N08E11L001	****	-60.5	****
01N08E13J001	-62.2	****	****
01N08E16G001	-58.4	-56.2	-2.2
01N08E16H002	-57.1	-55.5	-1.6
01N08E16P001	***	-54.9	****
01N08E18A002	-74.5	-58.0	****
01N08E22J001	-57.5	-54.5	-3.0
01N08E26A002	***	-48.3	****
01N08E27R002	***	-47.0	****
01N08E29M002	***	-53.0	****
01N08E35F001	-64.9	***	****
01N08E36F001	-58.0	***	****
01N09E05J001	***	-22.5	****
01N09E06N001	***	-59.0	****
01N09E13D001	****	9.0	****
01N09E15B002	***	***	****
01N09E15B002	***	***	****
01N09E17D001	-39.5	-37.5	-2.0
01N09E17M001	-39.5	-40.0	0.5
01N09E19C001	-44.0	-41.6	-2.4
01N09E21J001	****	-12.1	****
01N09E22G002	****	-9.9	****
01N09E29R001	****	-19.3	****
01N09E30C005	-35.2	-31.2	-4.0
01N09E31J001	****	****	****
01N09E35K001	****	1.6	****
01S07E01J001	-40.8	-44.6	3.8
01S07E02J001	***	-44.0	****
01S07E12H001	****	***	****

StateWellID	Fall 2016	Fall 2015	Change
01S07E13J001	****	***	***
01S08E04R001	-66.0	***	***
01S08E05A001	-76.4	***	***
01S08E05R001	-64.8	***	***
01S08E06D001	-41.7	-42.1	0.4
01S08E09Q001	***	-28.7	***
01S08E11F001	-32.7	-29.9	-2.8
01S08E12B001	***	-15.7	***
01S08E14B001	***	-21.2	***
01S08E15P001	***	***	***
01S08E20B001	***	-17.7	****
01S08E23A001	***	***	****
01S09E02R001	***	9.8	***
01S09E05H002	***	-11.0	***
01S09E07A001	-35.3	***	***
01S09E07N001	-30.3	-10.3	***
01S09E09R001	-19.7	-5.1	-14.6
01S09E11J002	***	***	***
01S09E18R003	-47.0	***	***
01S09E19Q002	5.0	6.0	-1.0
Total N	umber of Wo	ells	57
Total Number of Comparable Wells			14
Number of Wells with Decrease			11
Number of Wells with Increase			3
Number of Wells with No Change			0
Range of Change			-14.6 to 3.8
Average Change			-2.92

Table 3-2 Comparison of NSJWCD Water Levels

StateWellID	Fall 2016	Fall 2015	Change
03N06E04C001	-1.6	-3.4	1.8
03N06E23A003	-30.4	-33.6	3.2
03N06E24M003	***	***	****
03N06E25C001	-42.6	-41.8	-0.8
03N06E25H015	****	***	****
03N06E36N001	****	***	****
03N07E03R001	-36.3	-34.8	-1.5

			Change
03N07E05D005	18.5	18.3	0.2
03N07E08B012	-26.1	-24.6	-1.5
03N07E08E002	-39.0	-42.0	3.0
03N07E09C001	-48.7	-42.2	-6.5
03N07E09C003	-28.5	-28.2	-0.3
03N07E09P002	-39.1	-39.9	8.0
03N07E10L004	-40.0	-38.8	-1.2
03N07E12P001	-56.0	-51.8	-4.2
03N07E15C004	-50.5	-46.5	-4.0
03N07E17A006	-38.6	-37.8	-0.8
03N07E17D003	-30.5	-30.8	0.3
03N07E17D004	-27.4	****	****
03N07E17K002	****	-45.7	****
03N07E18D012	-36.0	-33.0	-3.0
03N07E18M002	-36.2	-36.4	0.2
03N07E19J004	-62.0	-59.0	-3.0
03N07E19Q012	-46.7	-46.8	0.1
03N07E20C012	-45.0	****	****
03N07E21L003	-59.0	-51.5	-7.5
03N07E22C011	-51.3	-49.0	-2.3
03N07E23C002	-56.0	-52.0	-4.0
03N07E23K011	-54.0	-52.8	-1.2
03N07E25G001	****	****	****
03N07E26G012	-55.7	-54.1	-1.6
03N07E32Q012	-57.7	-61.5	3.8
03N07E33G002	-55.0	****	****
03N08E04Q001	-49.2	-47.7	-1.5
03N08E05K011	-46.0	-44.1	-1.9
03N08E07J001	****	****	****
03N08E17B001	-55.8	-52.8	-3.0
03N08E17Q011	-59.6	-57.2	-2.4
03N08E19C001	****	****	****
03N08E19M003	-59.6	-57.9	-1.7
03N08E22A001	-60.3	-57.0	-3.3
04N06E02R011	****	****	****
04N06E03A012	-24.2	-24.1	-0.1
04N06E06N012	****	-16.6	****
04N06E12C004	****	-42.0	****
04N06E12N002	-43.8	-43.3	-0.5

StateWellID	Fall 2016	Fall 2015	Change
04N06E15B002	-19.7	-20.7	1.0
04N06E16A011	-14.3	***	****
04N06E16C001	****	-14.9	****
04N06E16K011	-2.3	-3.4	1.1
04N06E23D004	-29.5	-30.6	1.1
04N06E23K00	-18.0	-17.0	-1.0
04N06E24D012	-20.9	-22.7	1.8
04N06E24F001	-29.0	-26.5	-2.5
04N06E25B001	-17.8	-17.6	-0.2
04N06E25R001	-12.0	-8.0	-4.0
04N06E27D002	0.7	0.2	0.5
04N06E27Q012	12.3	12.7	-0.4
04N06E36J012	5.4	5.2	0.2
04N07E01B011	****	***	****
04N07E02R001	-49.4	-47.7	-1.7
04N07E04B012	-53.9	-51.7	-2.2
04N07E04Q012	-53.8	-51.5	-2.3
04N07E07A001	****	***	****
04N07E07H011	-47.8	-46.4	-1.4
04N07E11D012	-50.9	-49.6	-1.3
04N07E12E001	-52.5	***	****
04N07E12G012	-45.4	-43.7	-1.7
04N07E14P011	-40.0	-39.4	-0.6
04N07E15B012	****	***	****
04N07E16D001	-46.4	-46.5	0.1
04N07E17J013	***	***	****
04N07E17N001	-43.8	-44.3	0.5
04N07E19K001	-32.1	-41.1	9.0
04N07E19R011	-28.2	-27.5	-0.7
04N07E20H003	-36.7	-105.8	-1.2
04N07E21F001	-43.8	***	****
04N07E23J012	-38.0	-35.2	-2.8
04N07E24N002	-36.6	-35.2	-1.4
04N07E25G015	-21.5	-32.0	10.5
04N07E27C002	-44.5	***	****
04N07E28J002	-30.7	-30.2	-0.5
04N07E28P011	-0.1	0.0	-0.1
04N07E29H001	****	****	****
04N07E29N012	-8.4	-16.9	8.5

StateWellID	Fall 2016	Fall 2015	Change
04N07E31Q031	16.5	16.6	-0.1
04N07E32F011	1.1	1.0	0.1
04N07E33H001	15.0	15.5	-0.5
04N07E34K011	-19.2	-18.0	-1.2
04N07E35C002	***	***	****
04N07E35E013	***	-23.7	****
04N07E36L001	-36.1	-33.3	-2.8
04N08E01K001	46.1	47.8	-1.7
04N08E02E011	-13.9	-11.3	-2.6
04N08E04P014	-44.8	-36.7	-8.1
04N08E06C002	***	***	****
04N08E06N002	***	-56.2	***
04N08E11M012	-14.2	-12.1	-2.1
04N08E12A011	67.4	69.4	-2.0
04N08E12B011	46.5	49.0	-2.5
04N08E12N001	15.6	17.1	-1.5
04N08E14B011	-7.5	-5.9	-1.6
04N08E14K001	-16.1	-17.1	1.0
04N08E15D011	-26.4	-26.3	-0.1
04N08E15J011	-22.3	-20.5	-1.8
04N08E17A001	****	***	****
04N08E17J001	-39.0	***	****
04N08E21M001	-41.1	***	****
04N08E22C015	-26.7	***	****
04N08E26A012	***	***	****
04N08E27J011	-25.1	-23.9	-1.2
04N08E28E001	***	-39.4	****
04N08E32N001	-66.1	***	****
04N08E34Q011	-40.3	-43.4	3.1
04N09E05E099	156.2	149.7	6.5
04N09E06H098	174.7	173.6	1.1
04N09E06H099	205.8	205.4	0.4
04N09E06J098	205.7	204.6	1.1
04N09E06J099	164.1	159.5	4.6
04N09E06K097	111.0	108.0	3.0
04N09E06K099	123.4	121.2	2.2
04N09E06L011	****	109.4	****
04N09E07B098	151.6	152.5	-0.9
04N09E07B099	149.9	144.8	5.1

		_
04N09E07D012 78.5	72.2	6.3
04N09E07E011 ****	87.9	****
04N09E08N096 169.9	161.1	8.8
04N09E08N097 166.2	158.8	7.4
04N09E08N098 163.2	159.1	4.1
04N09E08N099 166.9	160.9	6.0
04N09E08P099 175.3	166.5	8.8
04N09E08R099 182.1	174.0	8.1
04N09E16Q002 136.3	143.9	-7.6
04N09E17A099 176.4	171.4	5.0
04N09E17E001 134.0	130.1	3.9
04N09E17E099 153.8	152.7	1.1
04N09E17F099 160.1	158.4	1.7
04N09E17G099 163.4	161.1	2.3
04N09E18A011 ****	151.0	****
04N09E18D002 46.7	47.3	-0.6
04N09E18N011 0.3	13.6	-13.3
04N09E20M001 110.0	109.7	0.3
04N09E21A001 165.0	166.5	-1.5
04N09E28C002 184.5	185.3	-0.8
05N06E36R001 ****	-42.8	****
05N07E31J001 -67.0	***	****
05N07E34G001 ****	***	****
05N07E34Q001 ****	-56.9	****
05N08E24Q011 52.0	53.3	-1.3
05N08E25P011 51.3	52.5	-1.2
05N08E32R011 ****	-40.7	****
05N08E35K012 -2.2	0.5	-2.7
05N09E30C011 159.6	161.3	-1.7
05N09E30M011 143.0	144.7	-1.7
05N09E31L011 121.9	123.1	-1.2
DWS-IPS -3.6	-3.7	0.1
Harney MW-1 -34.2	-32.7	-1.5
Harney MW-2 -38.4	-36.5	-1.9
Harney MW-3 -46.3	***	****
Harney MW-4 -46.8	***	****
North G-1 ****	-55.2	****
North G-3D -55.7	-55.5	-0.3
North G-4 -54.4	-54.1	-0.3

StateWellID	Fall 2016	Fall 2015	Change
North G-5	-51.2	***	***
North G-6	-47.4	-47.3	-0.1
Total I	165		
Total Number of Comparable Wells			119
Number of Wells with Decrease			74
Number of Wells with Increase			45
Number of Wells with No Change			0
Range of Change			-13.3 to 10.5
Average Change			-0.10

Table 3-3 Comparison of OID Water Levels

StateWellID	Fall 2016	Fall 2015	Change
01S09E21J002	26.2	27.5	-1.3
01S09E23N001	****	****	****
01S09E24R001	****	****	****
01S09E28M002	****	****	****
Total Nu	1		
Total Number of Comparable Wells			1
Number of V	Wells with D	ecrease	1
Number of V	Wells with In	ıcrease	0
Number of Wells with No Change			0
Range of Change			****
Average Change			****

Table 3-4 Comparison of SEWD Water Levels

StateWellID	Fall 2016	Fall 2015	Change
01N06E01J001	***	-30.5	****
01N06E01M001	-40.0	-40.0	0.0
01N06E02C001	-21.1	-28.9	7.8
01N06E04J003	-19.1	-19.9	0.8
01N06E04J004	-13.1	-13.9	0.8
01N06E04J005	-6.4	-7.1	0.7
01N06E05H001	-9.0	-9.6	0.6
01N06E05M004	****	****	****
01N06E12A001	-27.0	-26.0	-1.0

StateWellID	Fall 2016	Fall 2015	Change
01N06E12F001	***	-55.0	****
01N06E12G001	-37.8	-34.8	-3.0
01N06E23J001	***	***	****
01N06E27R002	-8.5	***	****
01N06E36C003	-19.7	-19.9	0.2
01N06E36C004	-14.7	-15.3	0.6
01N06E36C005	-12.7	-13.8	1.1
01N07E01A002	***	***	****
01N07E01M002	-71.0	-70.0	-1.0
01N07E02G001	***	-61.5	****
01N07E03D002	***	***	****
01N07E03D003	***	***	****
01N07E03D004	***	***	****
01N07E03D005	***	***	****
01N07E03L001	***	***	****
01N07E03M001	***	***	****
01N07E04R001	-59.0	-54.8	-4.2
01N07E05A001	-53.0	-49.0	-4.0
01N07E08B001	***	***	****
01N07E08H002	-48.0	-35.0	-13.0
01N07E08P001	-35.5	-29.5	-6.0
01N07E09E004	***	-35.0	****
01N07E09H001	***	-46.5	****
01N07E09Q003	-56.0	-48.0	-8.0
01N07E10D001	-61.0	-56.0	-5.0
01N07E10G001	***	***	****
01N07E16M001	-48.0	-41.0	-7.0
01N07E17D001	-36.5	-37.5	1.0
01N07E17D002	-38.5	-35.5	-3.0
01N07E18B001	-32.0	-33.0	1.0
01N07E18D001	-26.0	-23.0	-3.0
01N07E18E003	-27.0	-23.0	-4.0
01N07E18L001	-25.0	-31.0	6.0
01N07E19G001	***	***	****
01N07E20G001	****	****	****
01N07E21R001	-26.8	***	****
01N08E03P001	****	****	****
01S06E01C002	-9.6	-7.0	-2.6
01S06E02D004	-20.4	-8.9	-11.5

StateWellID	Fall 2016	Fall 2015	Change
01S06E02G002	-9.5	-10.2	0.7
01S06E10G001	-11.8	-8.8	-3.0
01S07E06M002	****	-11.0	****
01S07E08J002	-11.6	-14.0	2.4
02N05E01A002	-32.8	-32.9	0.1
02N05E01A003	-21.3	-21.9	0.6
02N05E01A004	-17.6	-18.0	0.4
02N05E01A005	-15.1	-15.4	0.3
02N05E01A006	-11.6	-12.0	0.4
02N06E03A003	-35.8	***	****
02N06E06C002	****	***	****
02N06E08N001	-29.7	-30.9	1.2
02N06E08N002	-27.2	-28.2	1.0
02N06E08N003	-23.5	-24.3	0.8
02N06E11H004	****	-56.8	****
02N06E11H005	****	-59.2	****
02N06E11H006	****	-52.2	****
02N06E11H007	****	-51.8	****
02N06E13R002	****	***	****
02N06E20E001	-21.1	-22.1	1.0
02N06E20E002	-19.6	-20.9	1.3
02N06E20E003	-18.1	-19.3	1.2
02N06E22B001	-37.0	-38.0	1.0
02N06E22G001	-32.0	-38.0	6.0
02N06E22G002	-38.0	-40.0	2.0
02N06E22Q001	-39.5	-36.5	-3.0
02N06E22Q002	-36.0	-35.0	-1.0
02N06E24F001	-41.0	***	****
02N06E24J002	-43.3	-45.3	2.0
02N06E26L001	-33.0	***	****
02N06E27B001	****	-33.0	****
02N06E27H001	-42.0	-35.0	-7.0
02N06E27K001	-48.0	-35.0	-13.0
02N06E27K002	-44.0	-44.0	0.0
02N06E27L001	-34.0	-33.0	-1.0
02N06E27P001	-41.0	-32.0	-9.0
02N06E34C001	-41.0	-33.0	-8.0
02N06E35B001	-37.0	****	****
02N06E36A001	-46.0	-47.0	1.0

StateWellID	Fall 2016	Fall 2015	Change
02N06E36D001	-40.5	-38.5	-2.0
02N06E36D001	***	-38.5	****
02N06E36F001	-38.5	-36.5	-2.0
02N06E36G001	-52.0	-41.0	-11.0
02N06E36N003	-41.5	-40.5	-1.0
02N06E36R003	-37.0	-26.0	-11.0
02N07E03D001	-82.0	***	****
02N07E06P002	-45.8	-49.8	4.0
02N07E08D001	-75.2	***	****
02N07E08K003	-71.0	-71.0	0.0
02N07E08R002	-68.6	-69.6	1.0
02N07E10F002	-66.4	***	****
02N07E11F001	-90.0	-80.5	-9.5
02N07E11R002	-78.0	***	****
02N07E15C001	***	***	****
02N07E16F002	***	***	****
02N07E16L001	***	-71.3	****
02N07E18H002	-51.7	-59.7	8.0
02N07E20N002	-54.0	-54.0	0.0
02N07E21A002	-77.8	-82.8	5.0
02N07E21K002	-78.0	-69.0	-9.0
02N07E21N001	***	***	****
02N07E23B001	-77.0	-82.0	5.0
02N07E24B001	-73.1	-71.1	-2.0
02N07E24Q001	***	-81.5	****
02N07E26H003	***	***	****
02N07E26N001	-75.3	-75.2	-0.1
02N07E28K002	-74.0	-69.5	-4.5
02N07E28N004	-64.4	-59.0	-5.4
02N07E28P001	***	***	****
02N07E29B001	***	***	****
02N07E29M002	-62.0	***	****
02N07E30E001	***	-46.5	****
02N07E30H001	-54.0	***	****
02N07E30K001	-49.0	-53.0	4.0
02N07E31M001	****	****	****
02N07E32J002	-58.0	-50.0	-8.0
02N07E32M002	-47.0	-48.0	1.0
02N07E32R001	***	****	****

StateWellID	Fall 2016	Fall 2015	Change
02N07E33L001	-63.0	-62.0	-1.0
02N07E34R001	****	-59.4	***
02N07E35L001	***	***	***
02N07E36H001	***	***	***
02N08E03G002	-63.7	****	***
02N08E04C001	-67.5	-67.5	0.0
02N08E05C001	-71.5	-84.5	13.0
02N08E08N001	-74.5	****	***
02N08E09G002	***	****	***
02N08E10H002	***	****	***
02N08E13K001	***	****	***
02N08E14C001	-48.0	-44.0	-4.0
02N08E15M002	-69.7	-63.2	-6.5
02N08E16D001	-75.1	-81.1	6.0
02N08E18C001	-83.7	****	***
02N08E20F001	***	****	****
02N08E24J001	***	****	***
02N08E24P001	***	****	***
02N08E28H002	***	-50.6	****
02N08E32L002	***	****	****
02N08E33E001	-71.6	-68.7	-2.9
02N09E03A001	***	****	***
02N09E04H001	***	****	****
02N09E05H001	***	****	***
02N09E05N001	-29.4	-27.5	-1.9
02N09E08N001	***	****	****
02N09E09D001	***	-19.8	***
02N09E18Q001	***	****	****
02N09E22D001	***	****	****
02N09E28N001	****	****	****
03N07E28K012	-57.8	-56.5	-1.3
03N07E35C002	-75.8	-65.8	-10.0
03N07E35L001	-69.0	-64.5	-4.5
03N07E36J001	-72.3	-72.3	0.0
03N08E27R001	***	****	***
03N09E25R001	80.7	80.1	0.6
03N09E36G001	****	****	****
C-1	****	****	****
Foothill MW-1	63.4	****	****

StateWellID	Fall 2016	Fall 2015	Change
Foothill MW-2R	42.0	34.1	4.9
Foothill MW-3	-18.7	-17.6	-1.1
Total Number	167		

Table 3-5 Comparison of SSJID Water Levels

StateWellID	Fall 2016	Fall 2015	Change
01S07E09Q001	***	-11.8	****
01S07E14M001	****	-9.1	****
01S07E14P003	-14.8	-10.8	-4.0
01S07E15F002	-14.1	-16.6	2.5
01S07E18L001	-0.1	0.1	-0.2
01S07E21G001	4.7	6.4	-1.7
01S07E25E001	-1.0	-4.0	3.0
01S07E25R001	6.5	7.8	-1.3
01S07E26G001	-1.5	***	****
01S07E27K001	0.6	2.7	-2.1
01S07E30R001	5.0	4.6	0.4
01S07E36D001	11.8	10.2	1.6
01S08E19R001	****	***	****
01S08E25Q001	****	***	****
01S08E29K001	-5.0	-4.0	-1.0
01S08E30C002	-5.4	-2.0	-3.4
01S08E34Q001	-4.3	7.5	-11.8
01S08E35R002	18.0	19.1	-1.1
01S09E29M002	***	21.5	****
01S09E33J002	45.7	47.2	-1.5
01S09E33P001	41.3	40.6	0.7
01S09E34A001	***	***	****
02S07E07D002	7.3	8.0	-0.7
02S07E07Q001	***	19.1	****
02S07E08R001	22.1	***	****
02S07E10B002	****	19.8	****
02S07E11N002	23.0	26.0	-3.0

StateWellID	Fall 2016	Fall 2015	Change
02S07E19H001	18.5	18.0	0.5
02S07E22N002	****	21.3	****
02S08E04M001	****	****	***
02S08E06J001	14.0	14.0	0.0
02S08E07R001	****	***	****
02S08E08A001	17.6	***	****
02S08E08E001	****	***	****
02S08E09J001	28.9	***	****
02S08E12D001	32.7	32.3	0.4
02S09E03K001	****	***	****
02S09E07D001	34.1	30.3	3.8
02S09E12R001	62.8	60.9	1.9
Total N	ells	39	
Total Number of Comparable Wells Number of Wells with Decrease Number of Wells with Increase			22
			12
			9
Number of Wells with No Change			1
Range of Change			-11.8 to 3.8
Average Change			-0.77

Table 3-7 Comparison of WID Water Levels

C+++-V4-IIID	E-II 204 <i>C</i>	F-II 2045	Chamas
StateWellID	Fall 2016	Fall 2015	Change
03N05E13L001	****	****	****
03N05E14C001	-5.3	-7.1	1.8
03N06E04P012	-8.4	-10.0	1.6
03N06E05N003	-14.5	-16.5	2.0
03N06E07D013	-10.5	-10.3	-0.2
03N06E07H003	-23.0	-19.0	-4.0
03N06E09N011	****	****	***
03N06E10D001	****	-13.9	***
03N06E15C004	****	****	***
03N06E17A004	-31.7	-29.7	-2.0
03N06E18M003	-18.1	-18.6	0.5
03N06E20D002	***	-32.5	***
03N06E26P002	-36.7	-37.2	0.5
03N06E27E001	-43.2	-43.7	0.5
03N06E29C001	-29.3	-31.3	2.0
03N06E30R001	-36.0	****	***
03N06E32R001	-29.0	-29.0	0.0

StateWellID	Fall 2016	Fall 2015	Change
04N05E10K001	-7.5	-7.0	-0.5
04N05E13C012	-9.0	-9.9	0.9
04N05E13H001	****	****	****
04N05E13R004	-12.0	****	****
04N05E14B002	-8.9	-10.4	1.5
04N05E14P001	-3.0	****	****
04N05E22H001	-13.0	****	****
04N05E24J004	-6.6	-8.6	2.0
04N05E26F001	-1.8	-3.3	1.5
04N05E36C004	-4.6	-3.4	-1.2
04N05E36H003	-4.0	-7.5	3.5
04N06E17G004	-7.5	-9.5	2.0
04N06E18R012	-7.4	-8.3	0.9
04N06E19R012	-1.5	-7.2	5.7
04N06E29N002	-7.6	-11.4	3.8
04N06E30E001	-4.3	****	****
04N06E34J002	21.4	18.9	2.5
05N05E28L003	-7.0	-6.0	-1.0
Total N	umber of W	ells	35
Total Number of Comparable Wells Number of Wells with Decrease Number of Wells with Increase Number of Wells with No Change			24
			6
			17
			1
Range of Change			-4 to 5.7
Average Change			1.01

Table 3-6 Comparison of South West County Area Water Levels

StateWellID	Fall 2016	Fall 2015	Change
01S05E31R002	0.1	0.6	-0.5
01S06E04J001	-2.0	-4.0	2.0
01S06E14F001	***	***	****
01S06E15F001	-0.7	-0.5	-0.2
01S06E23C003	-0.9	2.6	-3.5
01S06E26K001	-2.7	***	****
02S04E15R001	52.5	54.0	-1.5
02S05E08B001	-2.2	***	****
02S05E13N001	***	***	****
02S06E10K001	2.0	2.0	0.0

StateWellID	Fall 2016	Fall 2015	Change
02S06E25J001	14.9	12.6	2.3
02S06E26B001	****	****	****
02S06E27E001	****	***	****
02S06E31N001	49.5	50.5	-1.0
02S06E31N001	51.7	50.5	-1.2
03S05E04H001	****	****	****
03S06E03F002	****	***	***
03S06E23C001	***	***	***
03S06E27N001	62.8	****	****
03S06E27N001	66.5	****	****
Corral MW-4	224.0	221.9	2.1
Corral MW-5	226.7	227.1	-0.4
Corral MW-6	-54.8	-54.6	-0.2
Corral MW-7	1.7	1.8	0.0
MW-1A	-24.7	-22.1	-2.7
MW-1B	-38.5	-36.1	-2.4
MW-1C	-38.8	-36.3	-2.4
MW-2A	-34.5	-31.6	-2.9
MW-2B	-41.4	-38.5	-2.8
MW-2C	-41.8	-39.3	-2.5
MW-3A	-31.4	-27.7	-3.7
MW-3B	-41.7	-38.6	-3.1
MW-3C	-42.6	-39.9	-2.8
MW-4A	-34.3	-32.1	-2.2
MW-4B	-40.0	-37.4	-2.5
MW-4C	-39.9	-38.2	-1.7
MW-5A	-33.3	-31.2	-2.0
MW-5B	-34.3	-32.4	-1.9
MW-5C	-33.0	-31.6	-1.3
MW-6A	-28.1	-25.5	-2.6
MW-6B	-32.9	-30.6	-2.2
MW-6C	-30.2	-28.8	-1.4
Total N	lumber of Wa	alle	42
Total Number of Wells Total Number of Comparable Wells Number of Wells with Decrease			31
			27
Number of Wells with Increase			3
Number of Wells with No Change			1
Range of Change			-3.713 to 2.3
Average Change			-1.47
1110	gc Change		11-77

HYDROGRAPHS

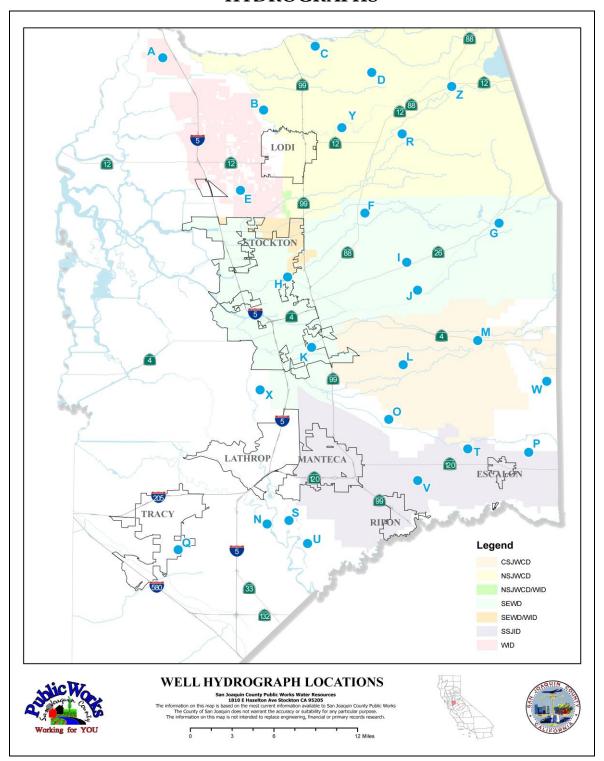


Figure 3-1: Well Hydrograph Locations

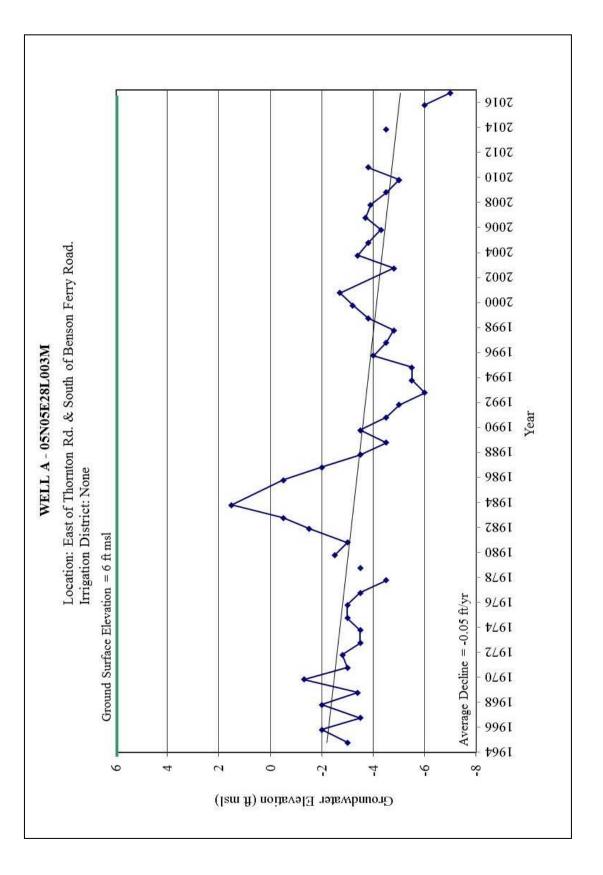


Figure 3-2: Fall Hydrograph Well A

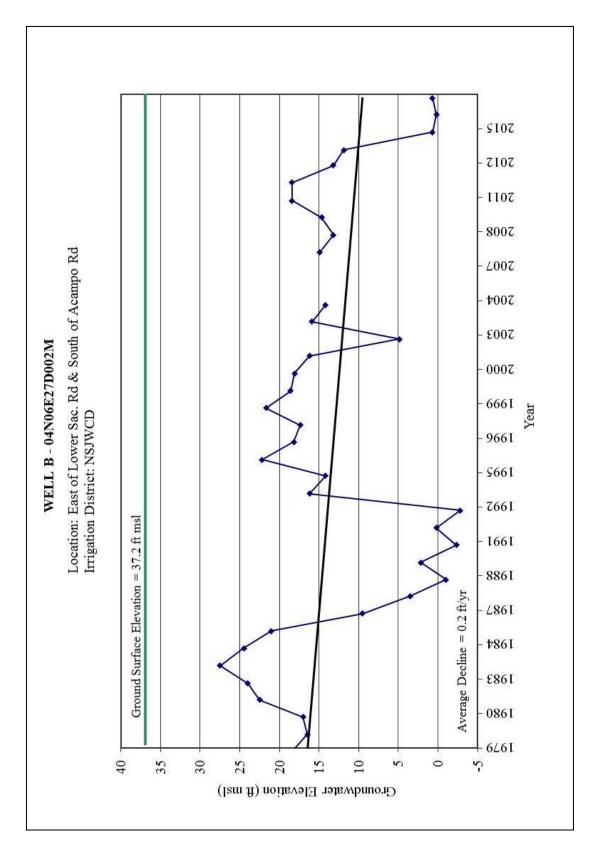
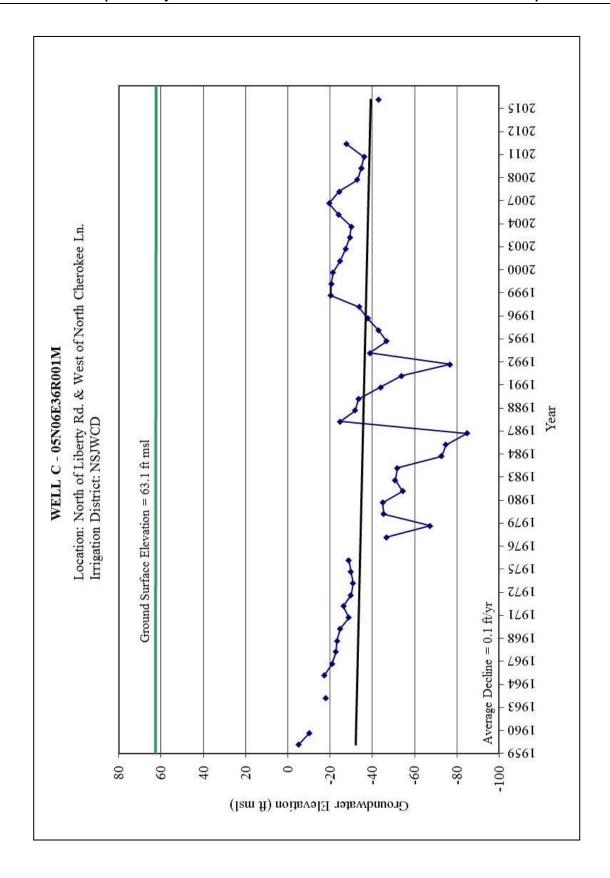



Figure 3-3: Fall Hydrograph Well B

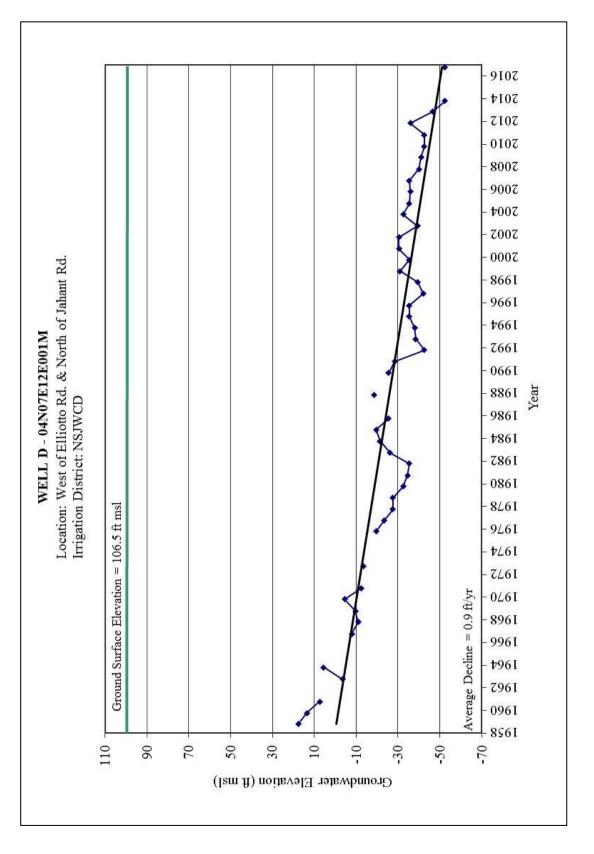


Figure 3-5: Fall Hydrograph Well D

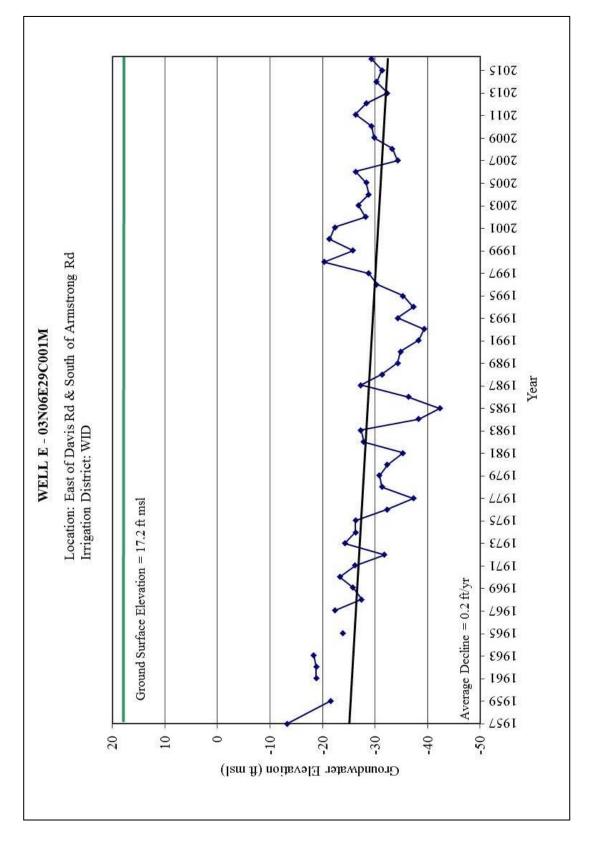


Figure 3-6: Fall Hydrograph Well E

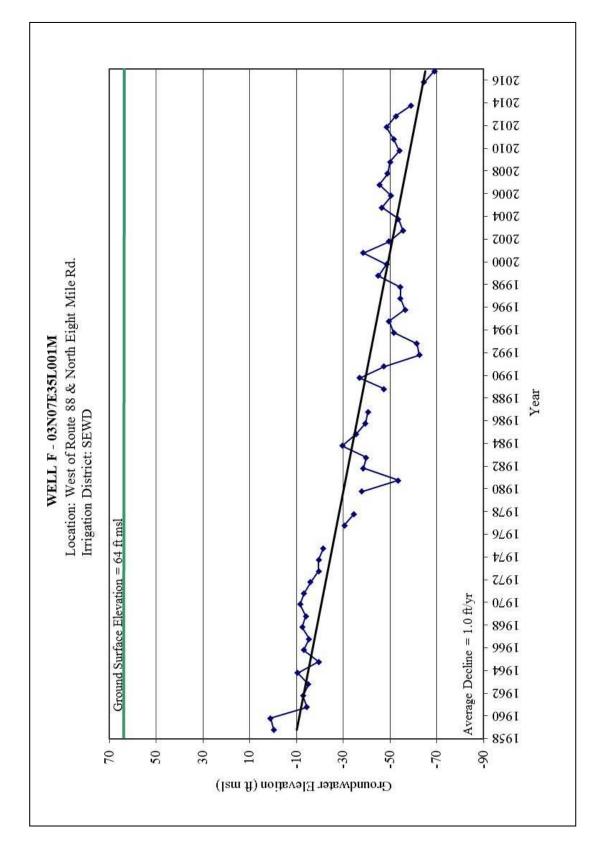


Figure 3-7: Fall Hydrograph Well F

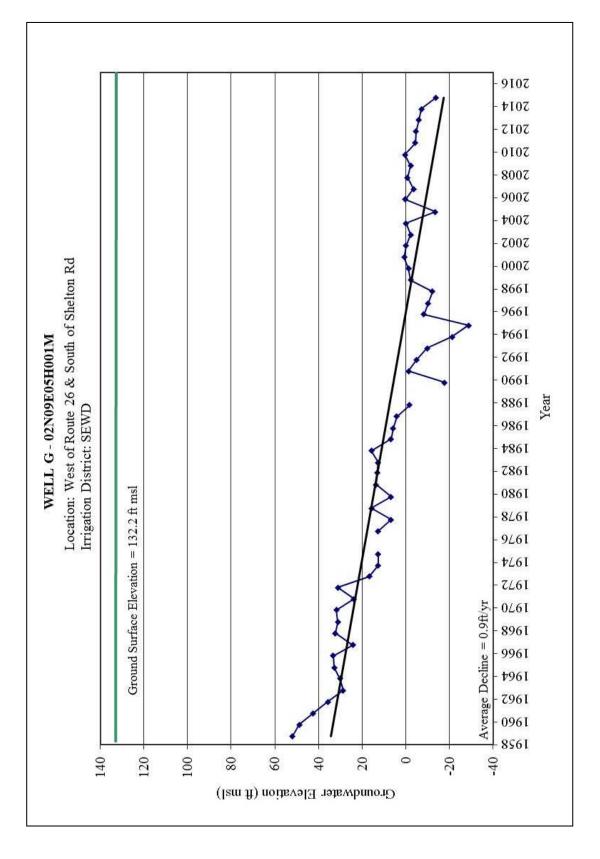


Figure 3-8: Fall Hydrograph Well G

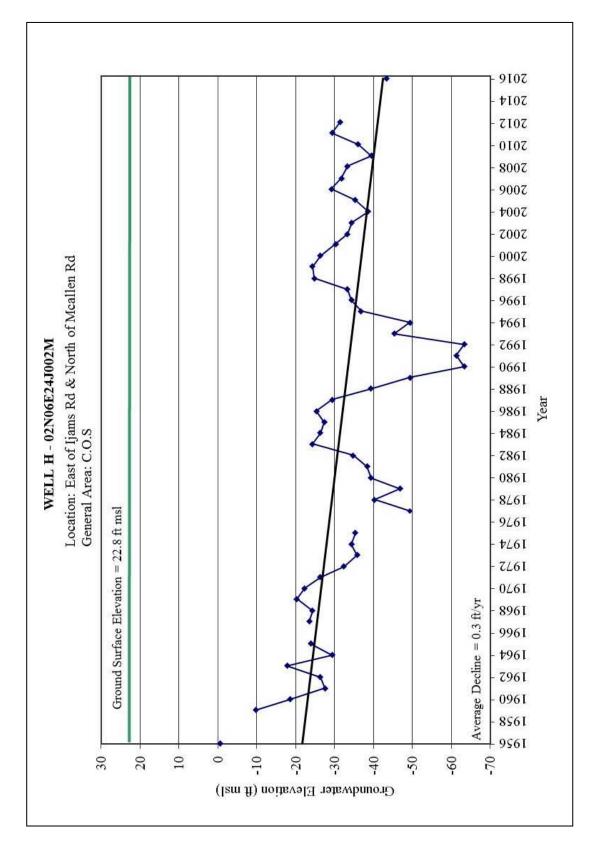


Figure 3-9: Fall Hydrograph Well H

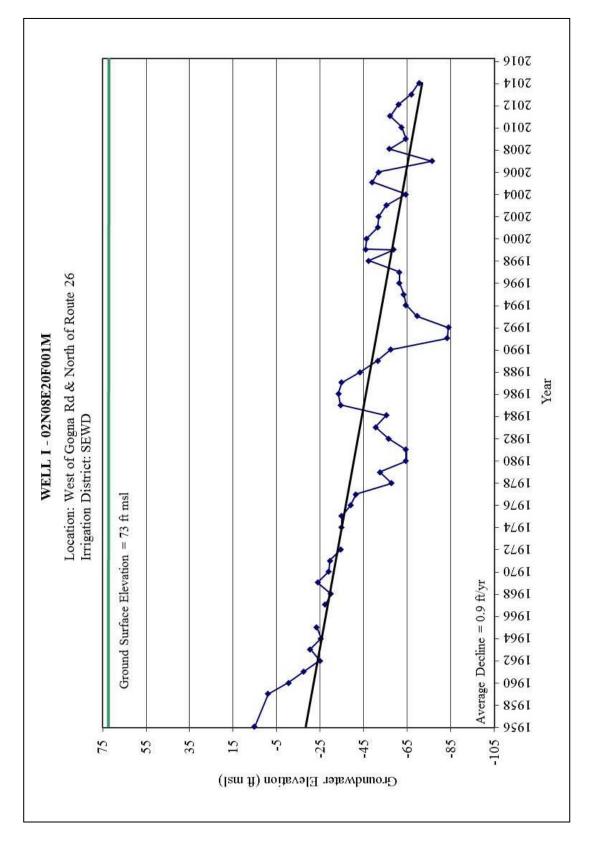
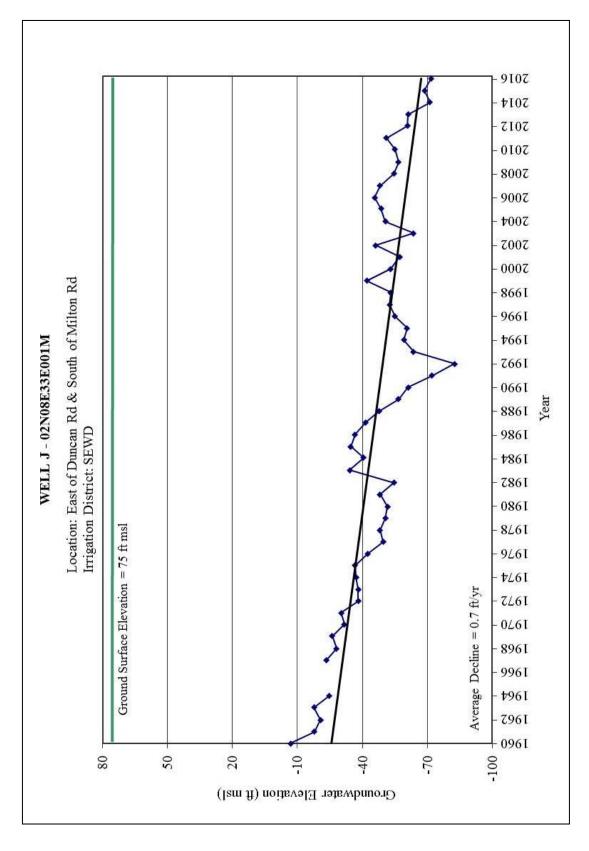



Figure 3-10: Fall Hydrograph Well I

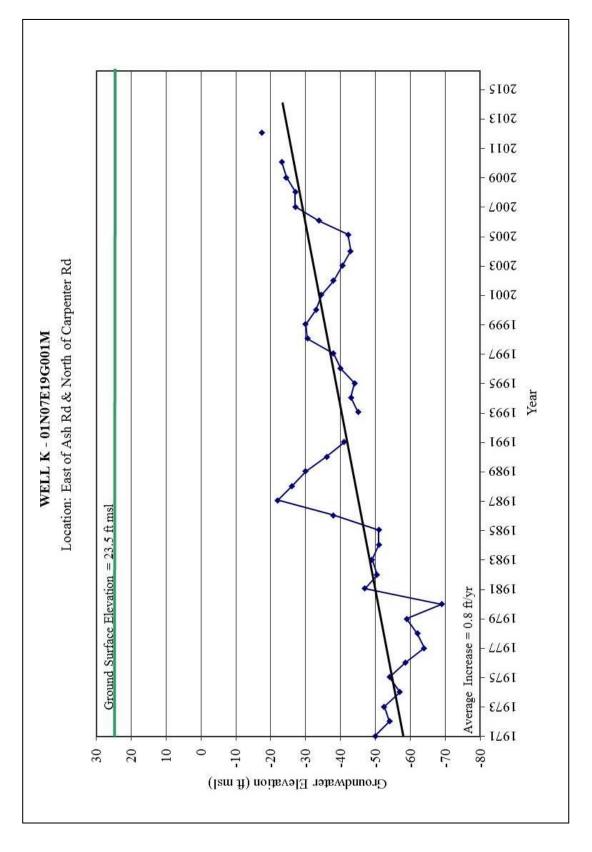


Figure 3-12: Fall Hydrograph Well K

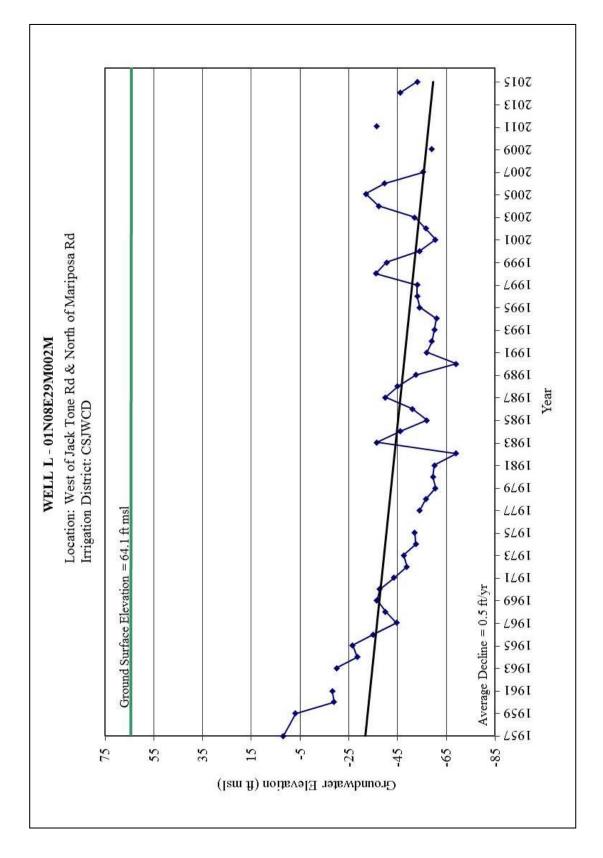


Figure 3-13: Fall Hydrograph Well L

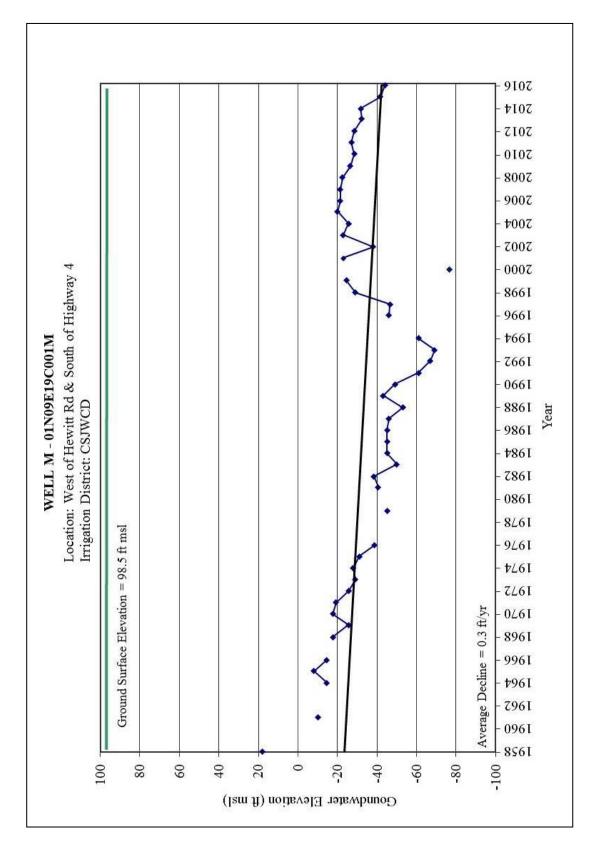


Figure 3-14: Fall Hydrograph Well M

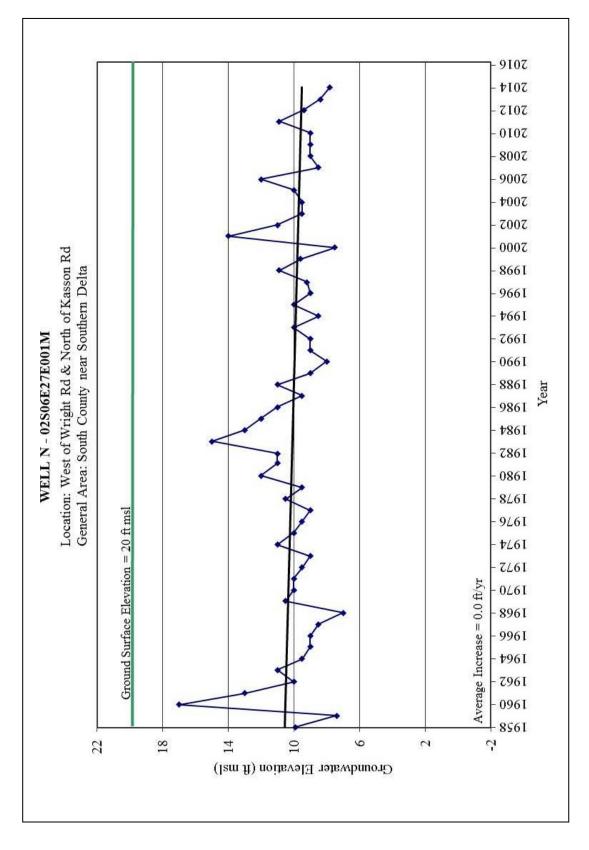


Figure 3-15: Fall Hydrograph Well N

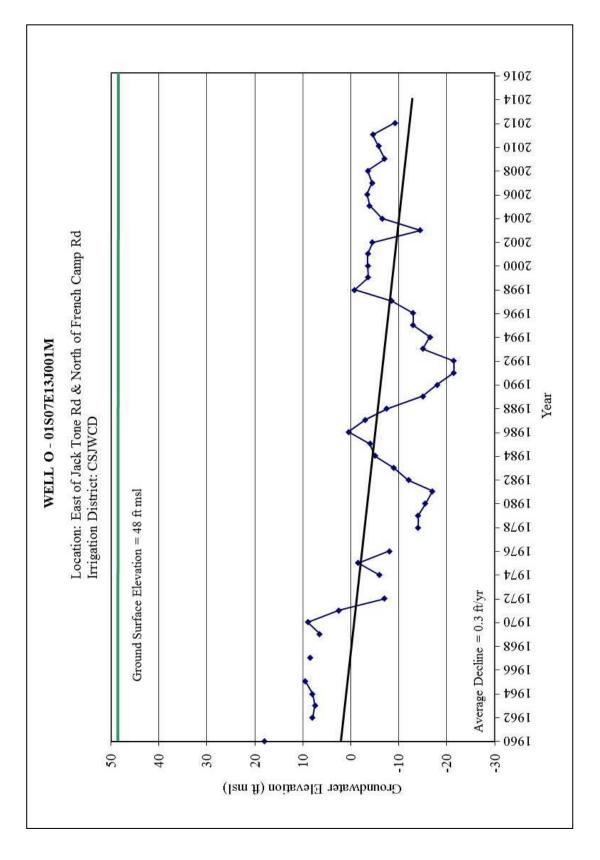


Figure 3-16: Fall Hydrograph Well O

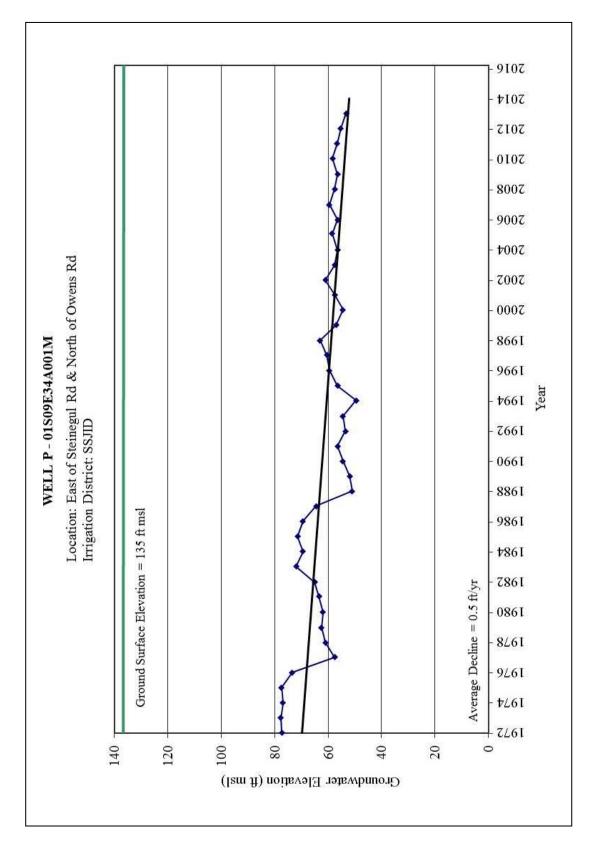


Figure 3-17: Fall Hydrograph Well P

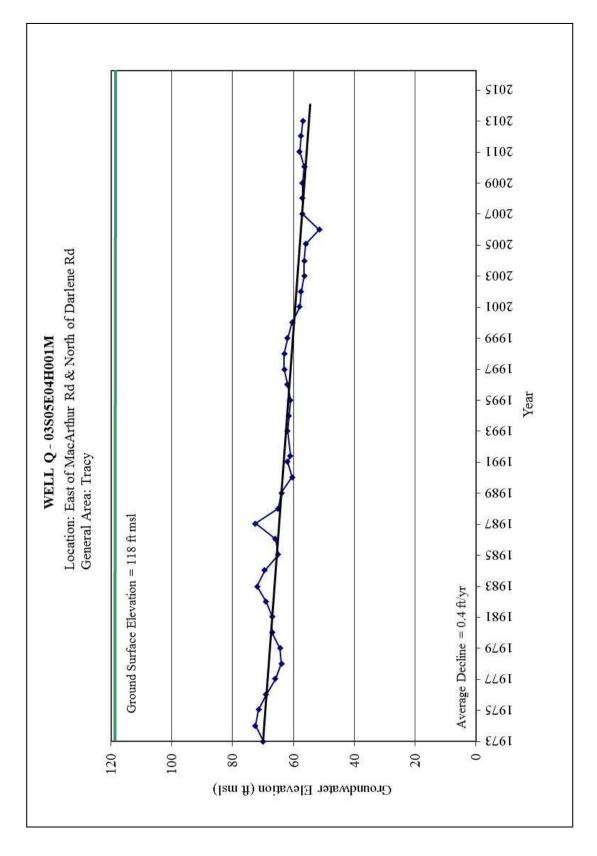


Figure 3-18: Fall Hydrograph Well Q

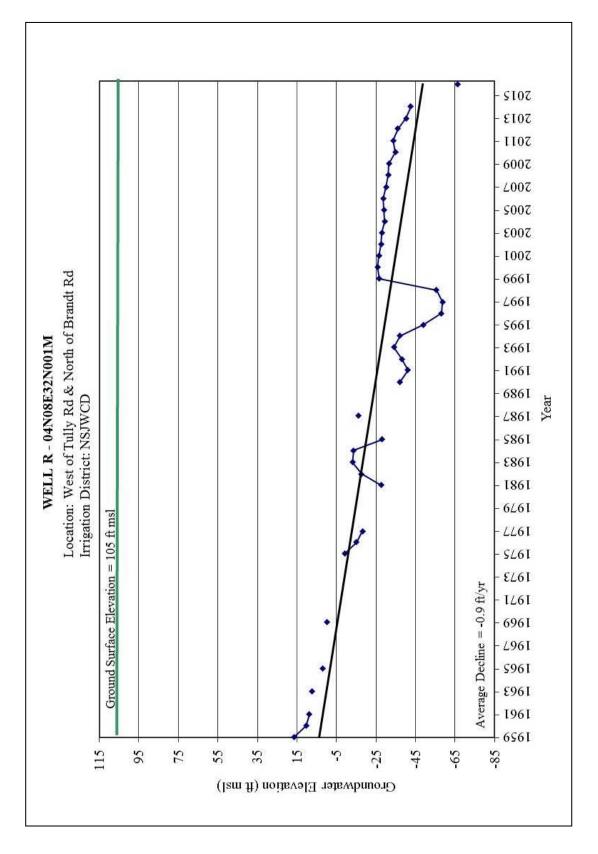


Figure 3-19: Fall Hydrograph Well R

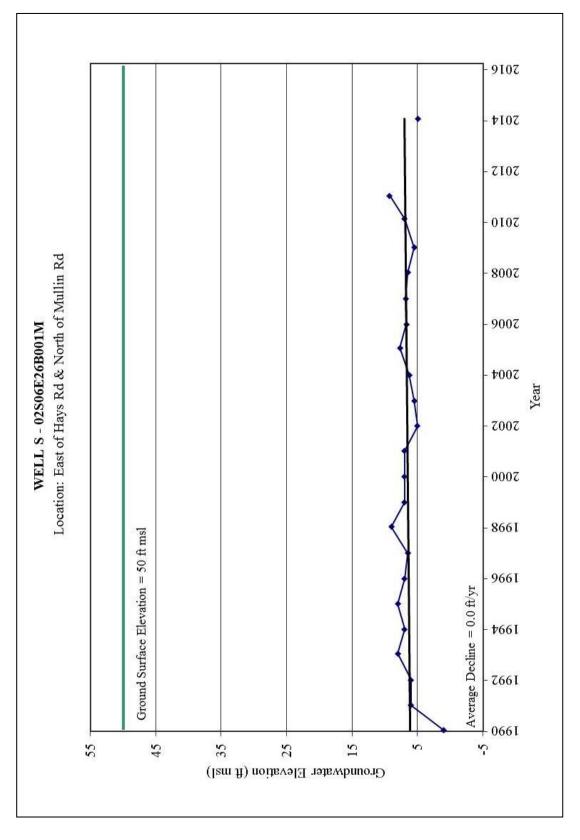


Figure 3-20: Fall Hydrograph Well S

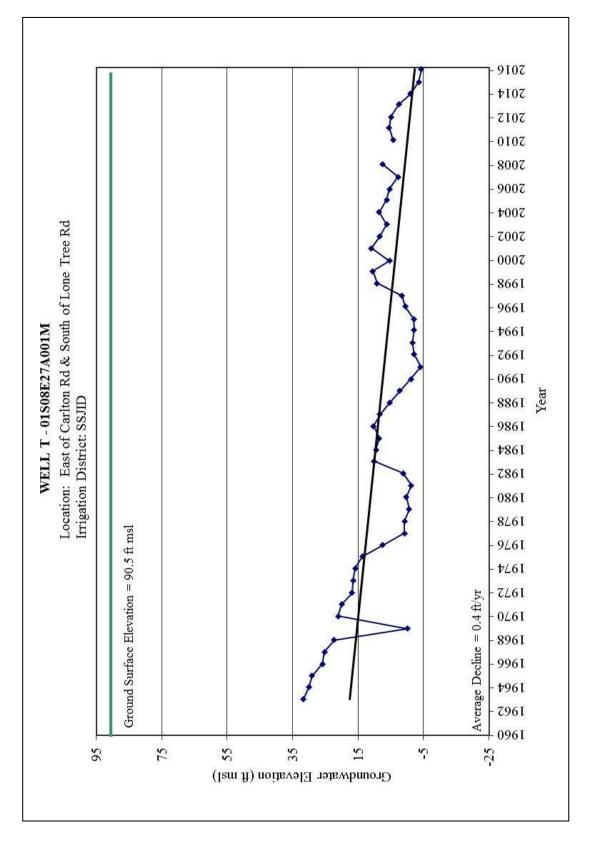


Figure 3-21: Fall Hydrograph Well T

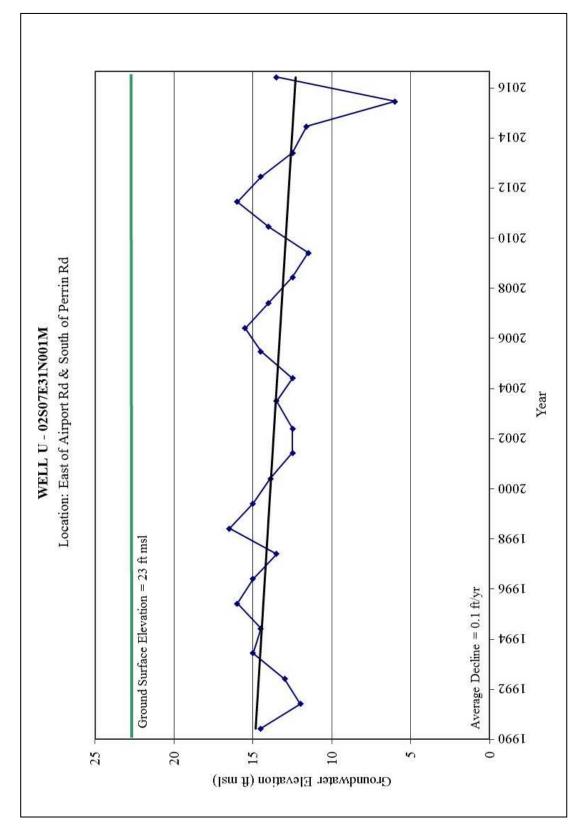


Figure 3-22: Fall Hydrograph Well U

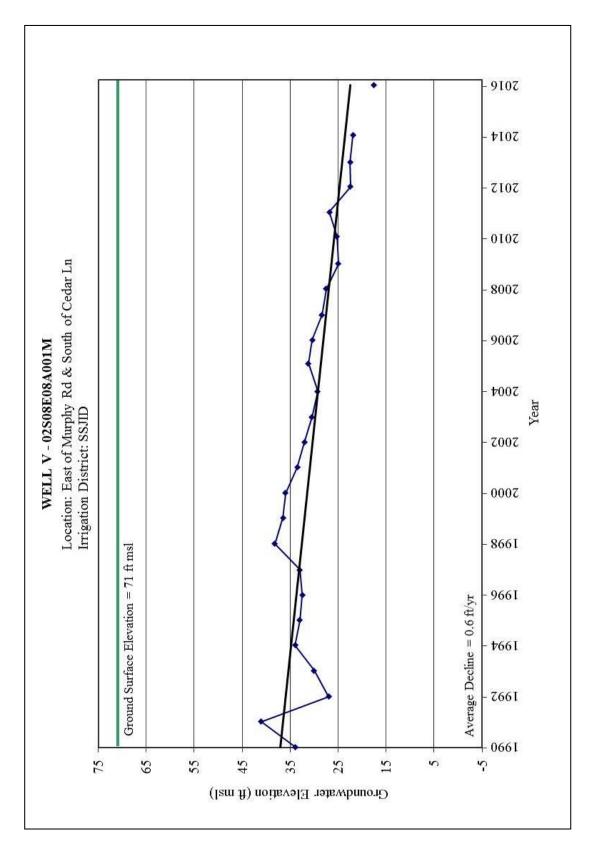


Figure 3-23: Fall Hydrograph Well V

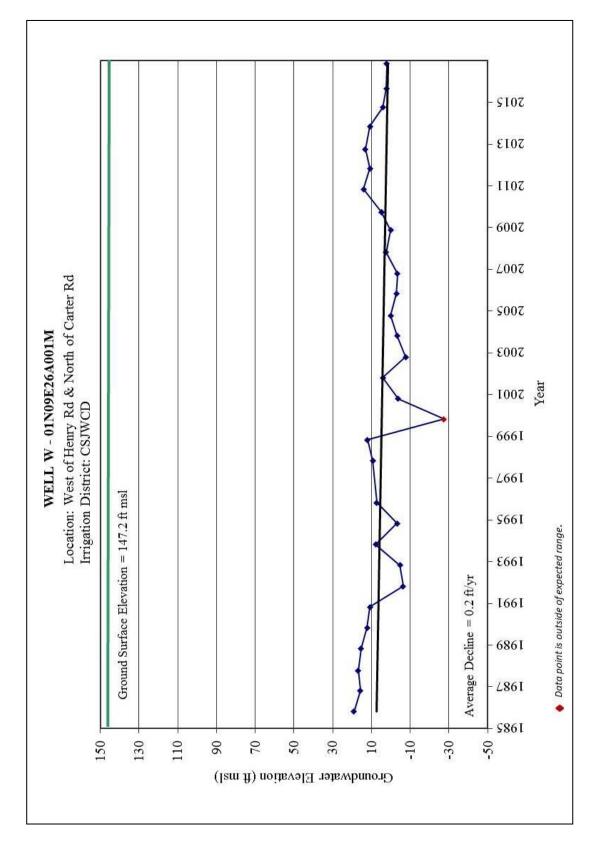


Figure 3-24: Fall Hydrograph Well W

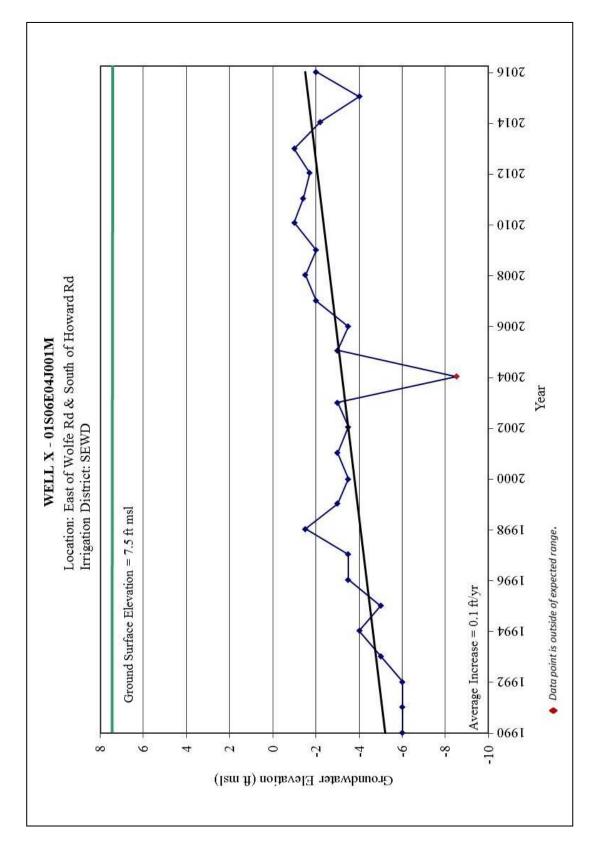


Figure 3-25: Fall Hydrograph Well X

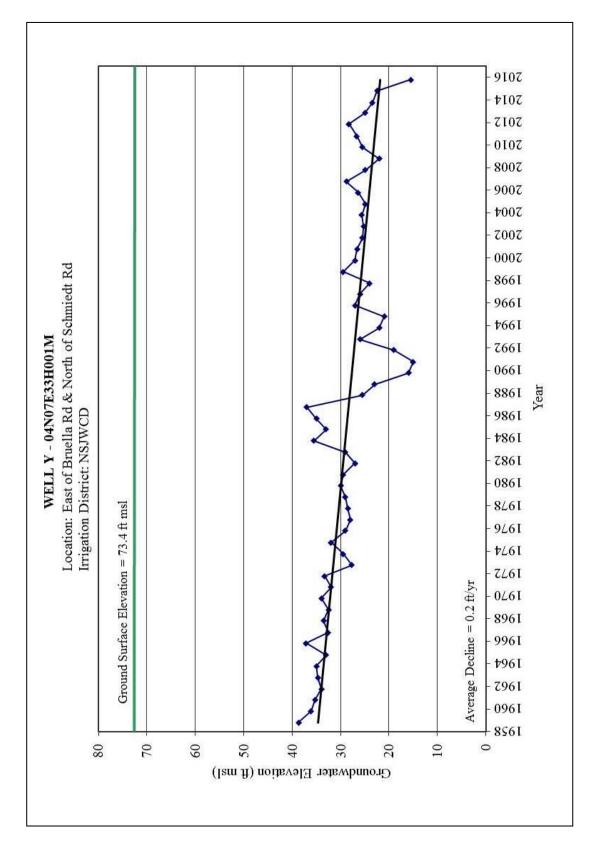


Figure 3-26: Fall Hydrograph Well Y

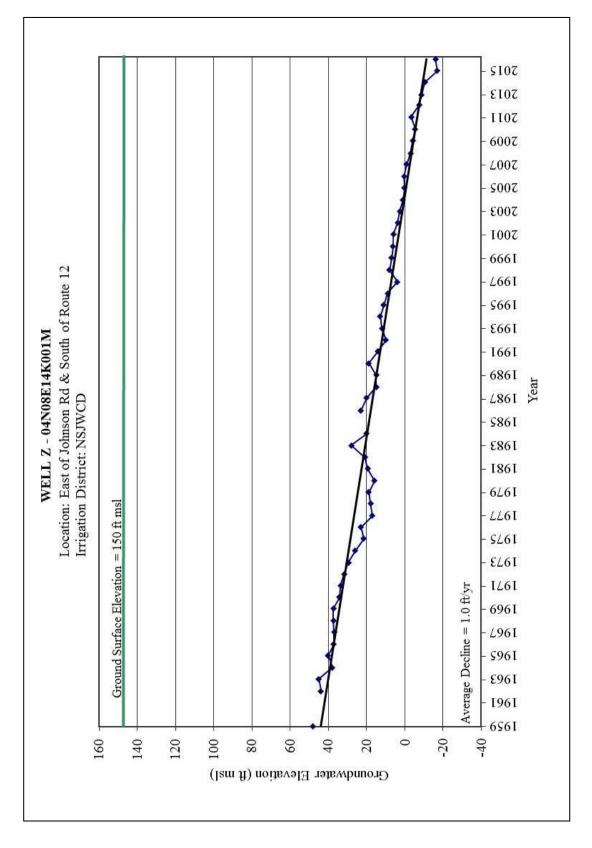


Figure 3-27: Fall Hydrograph Well Z

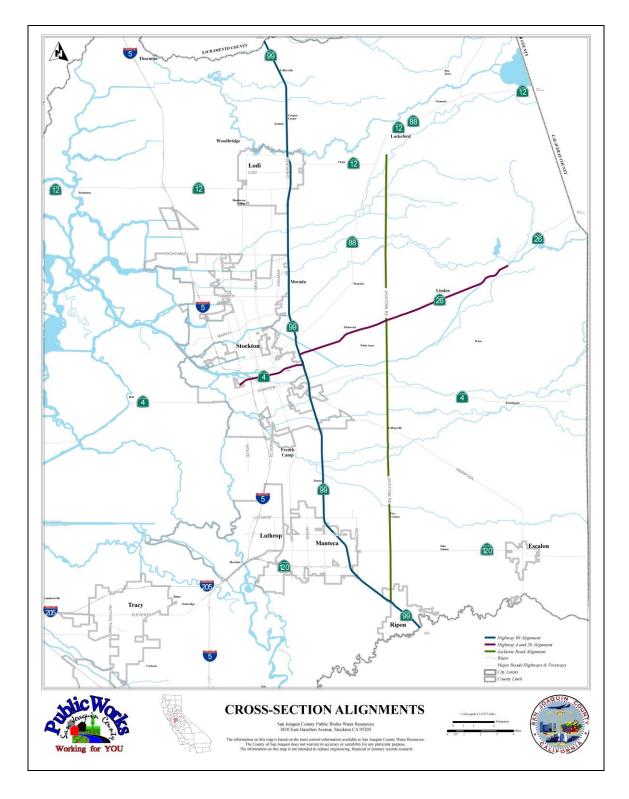


Figure 3-28: Cross Section Alignments

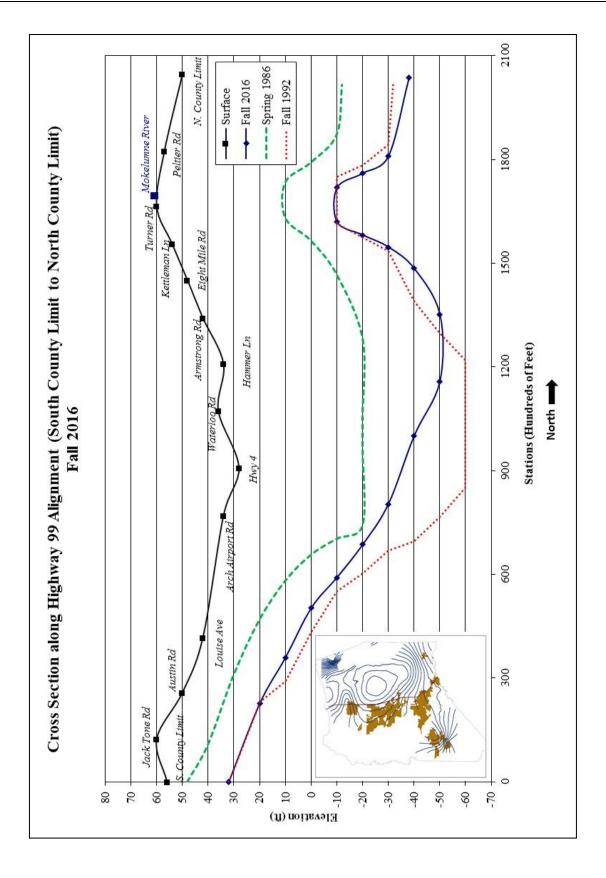
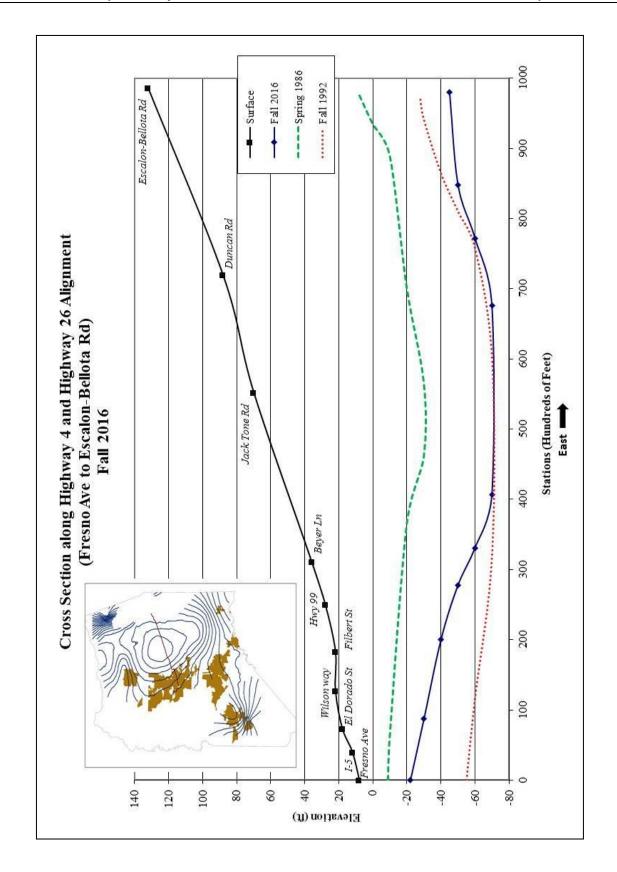



Figure 3-29: Highway 99 Cross Section Fall 2016

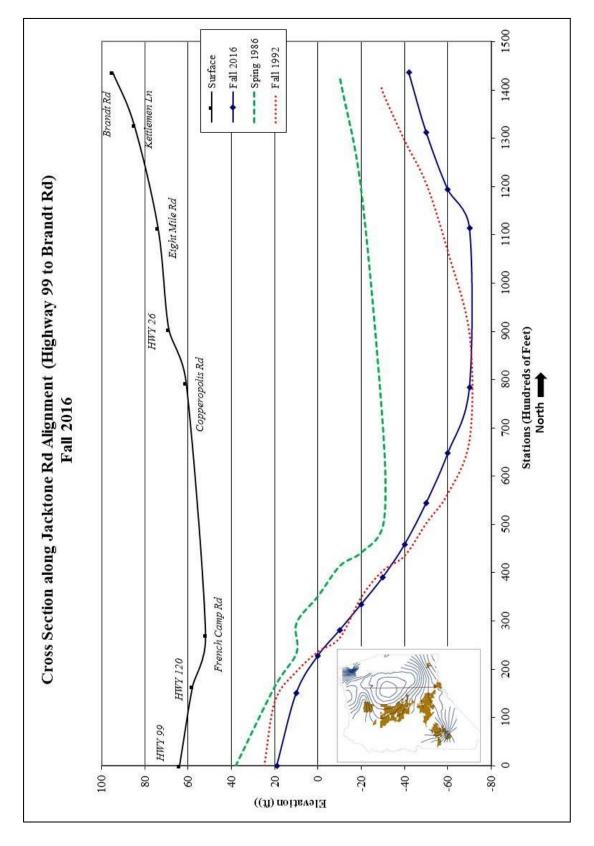


Figure 3-31: Jacktone Rd Cross Section Fall 2016

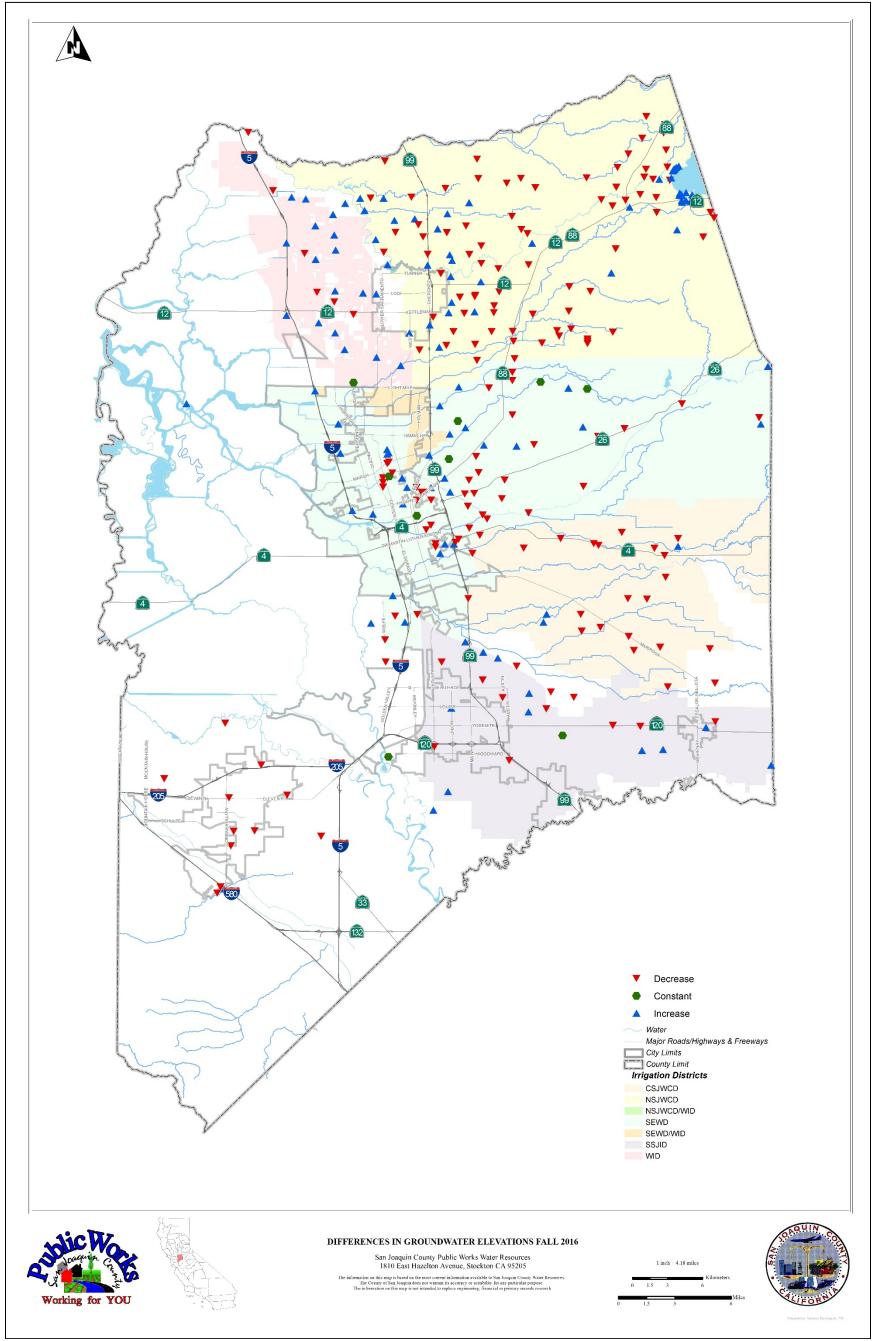


Figure 3-32: Differences in Groundwater Elevations Fall 2016

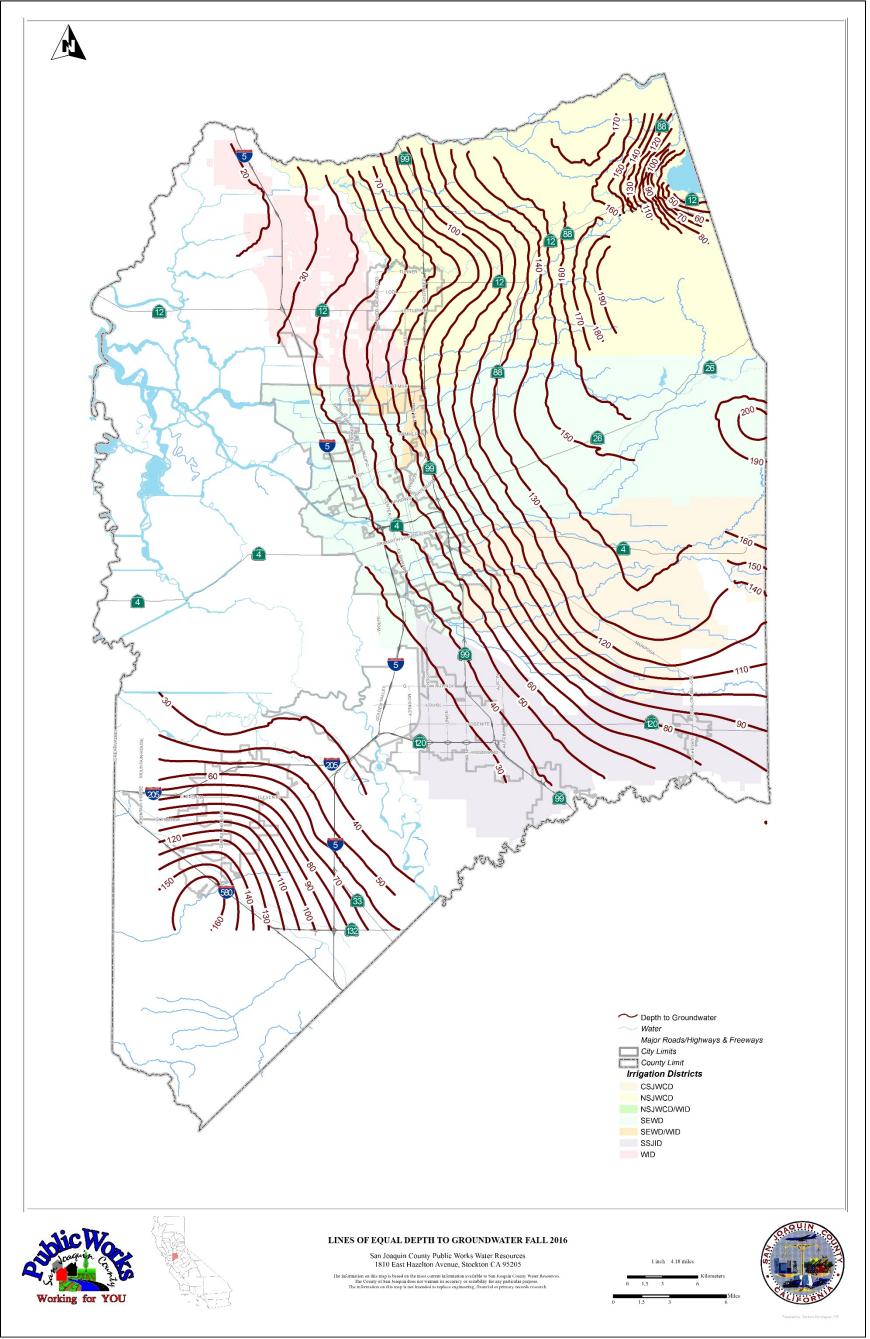


Figure 3-33: Lines of Equal Depth to Groundwater Fall 2016

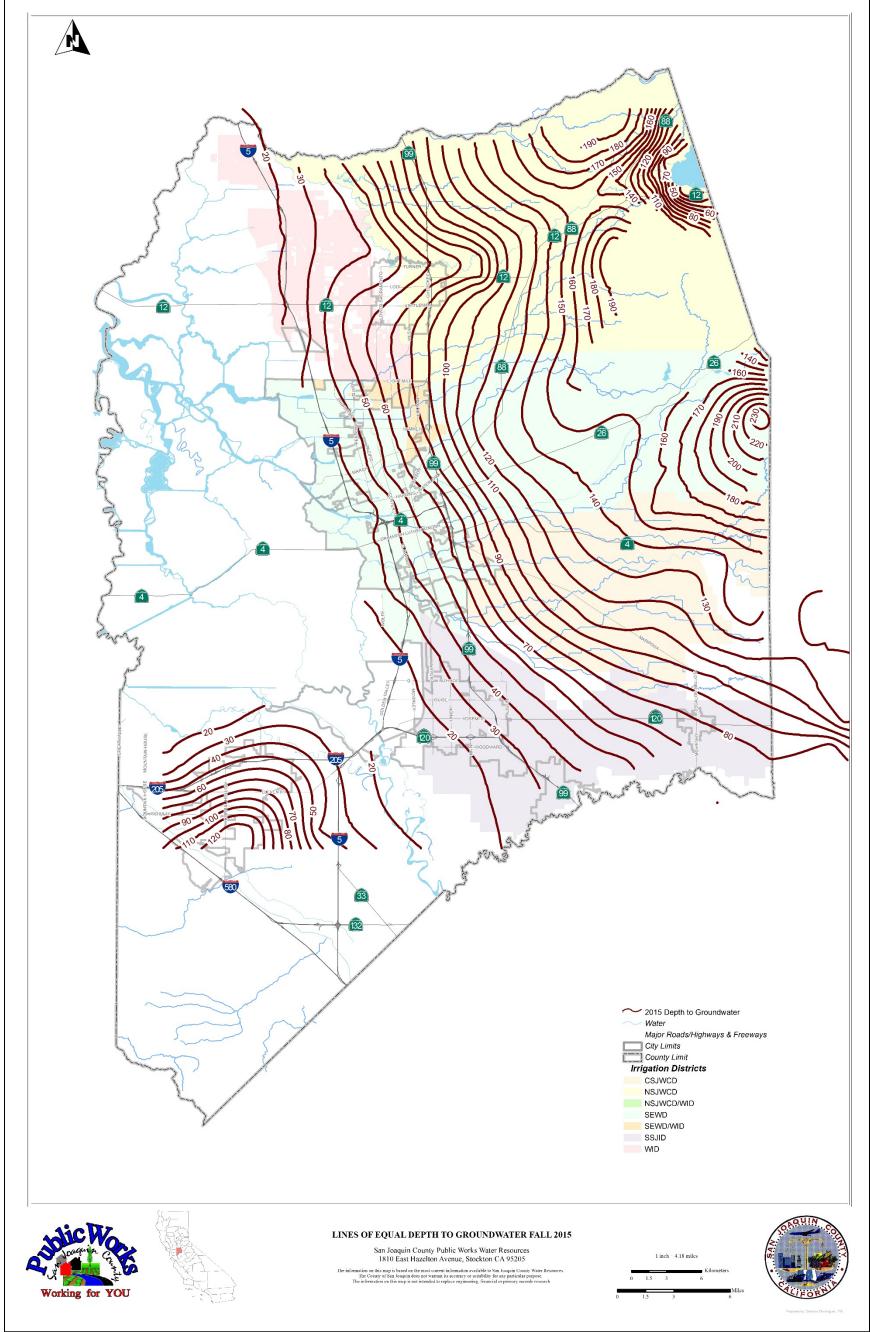


Figure 3-34: Lines of Equal Depth to Groundwater Fall 2015

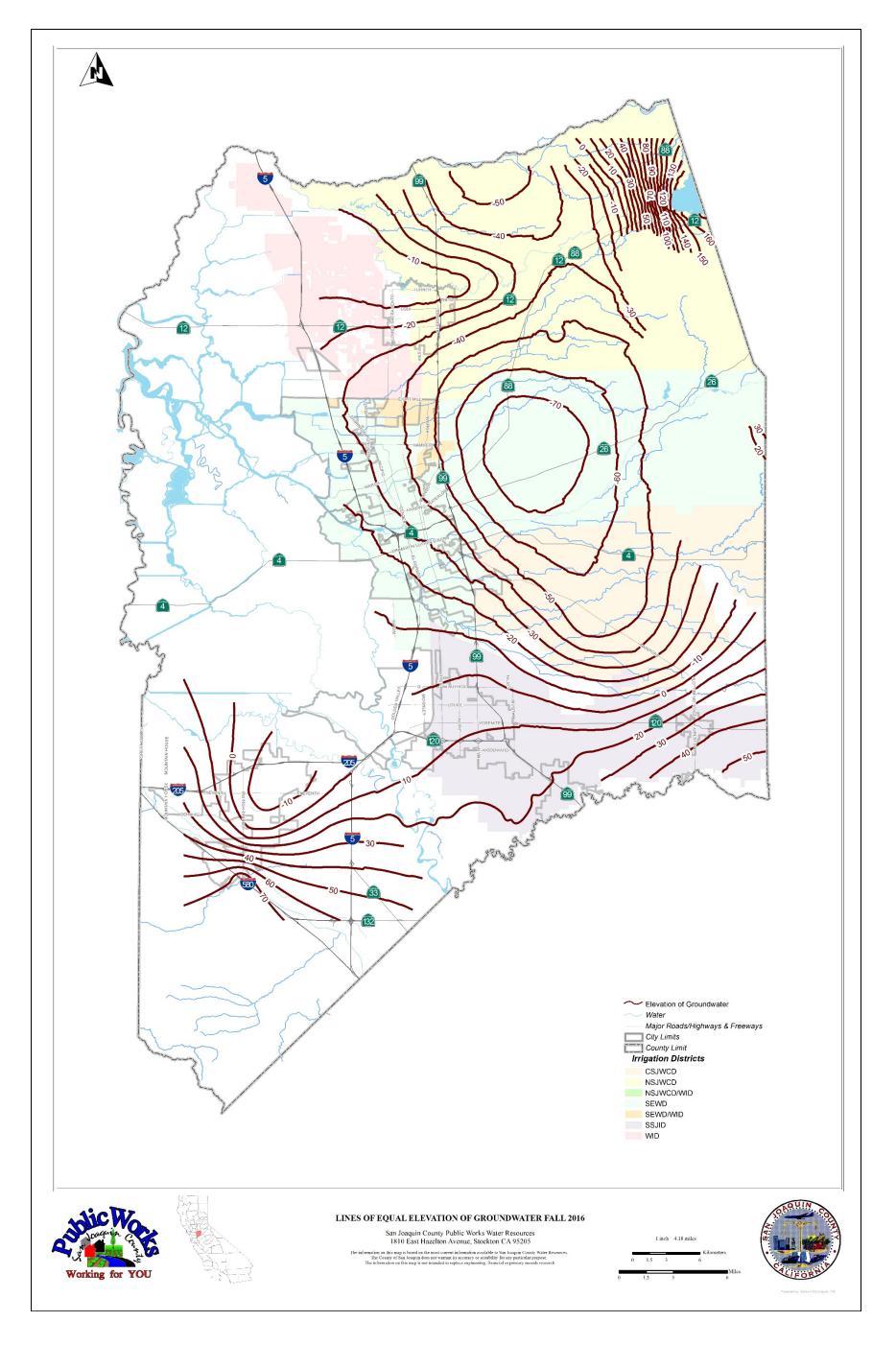


Figure 3-35: Lines of Equal Elevation of Groundwater Fall 2016

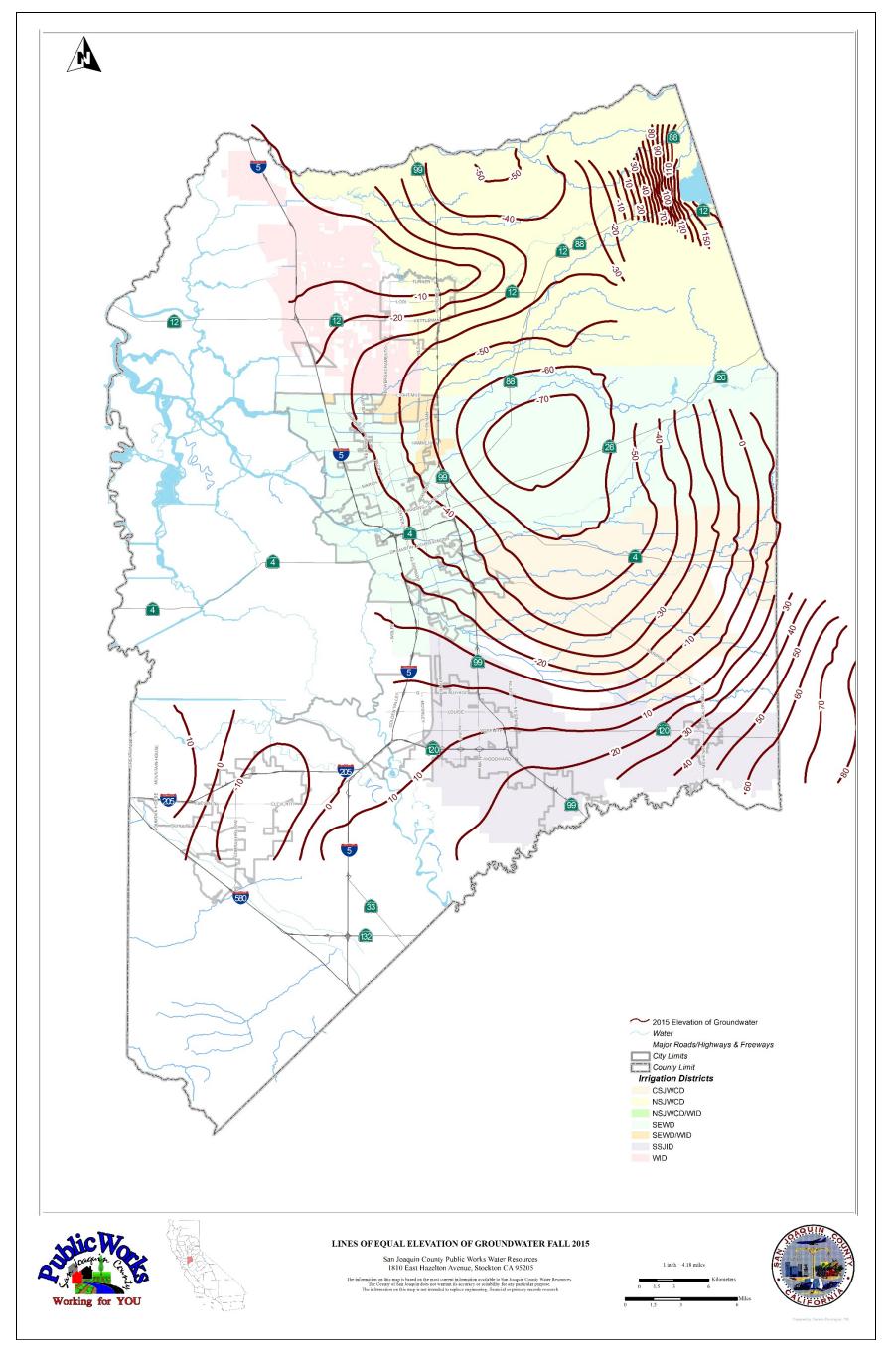


Figure 3-36: Lines of Equal Elevation of Groundwater Fall 2015

